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1. Introduction

Morpheme Segmentation is a well known problem in computational linguistics concerning

the task of segmenting words into meaningful units (morphemes). It is often one of

the first steps in natural languages processing, right after sentence splitting and word

tokenization. Splitting a word into morphemes simplifies further steps like Part-of-

Speech tagging, since the number of morphemes in a language is usually smaller than the

number of word forms (which often may also be infinite). Thus, morpheme segmentation

allows further processing steps to use a smaller lexicon or makes them even possible at

all.

Unsupervised morpheme segmentation (in contrast to supervised) refers to approaches

that do not take into account knowledge about the specific language they are segment-

ing, i.e. these approaches are language-independent. Because of this, such approaches

are suitable for morphologically not well-studied languages. And such languages then

usually suffer from a low number of speakers, and thus also from a low availability of

(digital) data. This makes it hard for quantitatively oriented segmenting approaches

to build a model. But also in data of well-studied languages previously unseen words

can occur which a segmenter needs to deal with. For such cases, even supervised seg-

menters may find aspects from unsupervised ones useful. In the annual competition

Morpho Challenge1, new approaches of unsupervised morpheme segmentation are regu-

larly competing.

Formal analogies, the other part of this thesis topic, is a notion based on the concept of

analogy, having its roots in ancient philosophy. An analogy describes a relation between

four elements as “A is to B as C is to D”, for example: “an electron is to the nucleus

asa planet is to the sun” (Lepage, 1998). Formal analogies can be seen as a subset

of analogies where the analogy is based on the form. In case of words, this form is

described by their characters, e.g. “lay : lays :: say :: says” (writing “:” for “is to”

1http://www.cis.hut.fi/morphochallenge2010/
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and “::” for “as”). The big advantage of formal analogies is that they can be validated

automatically by a computer without any knowledge about the language of the words but

only by looking at the set and order of their characters. This checking algorithm divides

the words into factors and these factors do often resemble morphemes, an observation

leading to the idea that finding and checking formal analogies within a given wordlist

may produce good morpheme candidates.

In my diploma thesis (Diplomarbeit) I want to study the potential of Unsupervised

Morpheme Segmentation using formal analogies. I will examine previous approaches

and implement a segmenter based on formal analogies.

The overall structure is as follows: In chapter 2, I will give on overview on unsupervised

morpheme segmentation, in chapter 3 I will do the same for formal analogies. Chapter

4 provides a outline on particular segmentation approaches. In chapter 5, I present in

detail my approach which is going to be evaluated in chapter 6. The thesis ends with a

Conclusion in chapter 7.

8



2. Unsupervised Morpheme

Segmentation

2.1. Problem description

The problem addressed in this thesis can be described as follows, see also Figure 2.1:

• Input: Unlabeled text data from a single natural language, tokenized on word

level, called input data.

• Output: The words in the input data split into their morphs, called segmented

data or output data.

In other words: we want to construct a program that takes text data (a corpus or only a

list of words) as input and outputs the same words segmented on a morphological level,

i.e., into their morphemes, or more accurate morphs, as will be pointed out in section

2.3.

We may note that our system always needs a whole word list at once as input in order

to generate an output. A single word can be segmented only if it was already part of a

previous input word list. This is different from other systems that take (labeled) training

data as input, create a model which may be then applied on previously unseen words.

An example for the segmenter’s input and output is depicted in Figure 2.2.

unlabeled words → segmenter → words split into morphemes

Figure 2.1.: Scheme of the thesis problem
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For the given task, we assume the following restrictions, described in detail in the rest

of this chapter:

• We split words into their smallest meaning-bearing units, i.e., into morphs (and

not morphemes).

• We do not recognize allomorphs, i.e., morphs with the same meaning. That means,

we step back from finding morphemes, see the following section for clarification.

• We do not categorize the found morphs. We do not provide rules for combining

morphs, i.e., a morphology “grammar”.

• We allow an unlimited number of morphs within a word.1

• Our input data is unlabeled.

• We require the input data to be part of a single language.

• We require our system to work with the same parameters or models for any lan-

guage.

• We assume a concatenative morphology (respectively, we ignore non-concatenative

morphology if present).

In the following, we will take a closer look on these restrictions and on other aspects of

morpheme segmentation – just after we pointed out its general relevance and usefulness.

Unlabeled words segmented words
says say + s
realizes real + ize + s
toys toy + s
anti-globalization anti- + global + iz + ation
feet feet
tiny tiny

Figure 2.2.: Example input and output of constructed segmenter

1However, as we operate on character level, the natural limit for the number of morphs in a word
is the number of its characters.
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2.2. Relevance

The relevance of the research field around unsupervised morpheme segmentation can be

divided in two parts.

One motivation is a rather practical one: It serves as one of the first steps in computa-

tional analysis of natural language. After having detected sentence and word boundaries,

word form analysis is an important step to narrow down the often huge amount of word

forms to make further processing possible at all: Following steps of natural language

analysis like Part-of-Speech tagging, spell checking or machine translation usually re-

quire a smaller set of input forms than the number of word types that usually occur in

language data.

However, this might also be solved by supervised morpheme segmentation. The second

motivation for unsupervised approaches is a scientific one: Having a functioning system

acquiring the morphology of languages could also serve as a model for human language

acquisition and so contribute to linguistic theory. (Hammarström, 2009, page 2). This

is why it is useful to define the input of unsupervised morpheme segmentation strictly

as (linguistically) unlabeled and language-independent.

Having such a functioning language-independent segmenter it is likely to have captured

general morphological rules valid beyond many languages – and so to have captured

parts of something like an Universal Grammar.

Besides, also in practical tasks unsupervised and language-independent approaches could

save a lot of work, since one and the same system could be run on data from different

even not well-studied languages to obtain a segmentation – without linguists who would

need to carefully study the morphology of every single language.

Additionally, even supervised approaches may benefit from ideas of unsupervised ones

since they also need to handle previously unseen words. Or one could imagine a two-

step morphology acquisition system where morpheme candidates are generated by an

unsupervised approach and then are refined by supervised work of a linguist.
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2.3. Morphemes and morphs

2.3.1. Definition

As we want to find a segmentation on a morphological level, it is indicated to take a closer

look on the concepts and units of morphology. Starting with the entry for morpheme

in (Bussmann et al., 1996, page 767), we find:

“Theoretical basic element in structural language analysis, analogous to pho-

neme: the smallest meaningful element of language that, as a basic phono-

logical and semantic element cannot be reduced into smaller elements, e.g.,

book, three, it, long. Morphemes are abstract (theoretical) units. They

are represented phonetically and phonologically by morphs as the small-

est meaningful, but unclassified, segments of meaning. If such morphs have

the same meaning and a complementary distribution or if they stand in free

variation, then they are said to be allomorphs.”

And for morph, we find:

“The smallest meaningful phonetic segment of an utterance on the level

of parole which cannot yet be classified as a representative of a particular

morpheme (on the level of langue vs parole). If two or more morphs

have the same meaning but a different distribution then they belong to the

same morpheme and are called allomorphs of that morpheme. Thus -able,

as in conceivable, and -ible, as in edible constitute two different phonetic

representations of an abstract suffix meaning roughly ‘able’.”

In other words, morphemes can be considered as semantic atoms of language. However,

they are a theoretical construct as they are summarizing one ore more instances of morphs

having the same meaning. Thus, one has to decide which morphs are allomorphs of the

same morpheme.

2.3.2. Allomorphy (vs. Synonymy)

According to the definition above, morphs are allomorphs of a morpheme, if

• they share the same meaning and

12



• have a complementary distribution or stand in free variation.

Based on this definition, it seems reasonable to consider (drink-)able and (ed-)ible or

color and colour as allomorphs of one morpheme. But looking at the definition again,

why could not synonyms like sick and ill be also allomorphs of one morpheme? Both

sick and ill share the same meaning and stand in free variation. Or asking the question

on the background of constructing an unsupervised morphology learner: When color

and colour should be mapped to the same morpheme, why not sick and ill as well?

It seems as if the definition of allomorphs (and so also of morphemes) needs to be more

precise. The following ideas could help in distinguishing allomorphy and synonymy:

• We divide morphemes into bound and free and allow allomorphy only for bound

morphemes. Bound morphemes may not appear alone, they always have to be

connected to at least one other morpheme (Kroeger, 2005, page 32). Again, the

plural marker s as in (kid-)s is an example, as it may not appear alone. Then, free

morphemes may do so, as the examples of sick and ill show. However, we should

then ask ourselves what to do with phenomena like color and colour. As both

carry the same meaning, where should we “merge” them: on the morphological

level or on some extra defined “language variation” level?

• We divide morphemes into roots and affixes and allow allomorphy only for affixes.

Affixes are morphemes carrying grammatical meaning (Kroeger, 2005, page 33).

Examples are (kid-)s as a marker for plural or (danc-)ed as a marker for a verb

in the past tense. On the other hand, roots carry lexical meaning, as for instance

kid(-s) and danc(-ed) do. However, if only affixes may be allomorphs, we would

exclude eat and ed(-ible) from being allomorphs of eat.

• We may require a similarity on the surface form (i.e., the characters) of the

morphemes to allow allomorphy. However, this would require us to find a measure

for similarity and to set up a threshold manually. We would still have no clear

definition and it seems hard to find a similarity threshold low enough to capture

the allomorphy of eat and ed(-ible) without finding too much false positives.

Summing up, it seems to be hard to find a clear distinction between allomorphy and

synonymy.

13



2.3.3. Theoretical construct vs. Useful output

Apparently, it is difficult to find an exact definition of allomorphy and so also of mor-

phemes. While this problem may still remain for theoretical linguists and morphologists,

it may be useful to see morpheme segmentation from a more practical view.

As pointed out in section 2.2, one purpose of of morpheme segmentation is to have a more

suitable input for the following steps in Natural Language Processing, e.g., for Part-of-

Speech tagging, Semantic analysis or Machine translation. One of the constraints for

the input of these tasks is usually to narrow down the set of input items. However, this

constraint is not sufficient: We could also obtain a smaller set of items by considering

every character as a morpheme. We still need our output items to be meaning-bearing.

A set of the smallest meaning-bearing units – this definition is already fulfilled by morphs.

So we decide to step back and concentrate only on finding morphs. We pass on finding

allomorphs of a morpheme. This does not mean that we should give up on the problem

of allomorphy. It should just be dealt on a lexical level, as it is apparently so similar to

synonymy.

Our still hard enough problem remains to find the smallest meaning-bearing units in a

stream of language data.

2.3.4. Phonemes vs. Graphemes

Eventually, we should note that in contrast to the given definitions above, we do not work

on phonemes but on graphemes, as we have much more written data than annotated

spoken available. Thus, we assume to be able to capture the morphs on the graphemic

level as well as we would on the phonemic one.

2.4. Unsupervised vs. Supervised

As the title of this thesis states, we want to do unsupervised morpheme segmentation.

Since we have already defined the term morpheme, it is also indicated to define unsu-

pervised.

It is surprisingly hard to find an exact definition of unsupervised in the context of mor-

14



pheme segmentation. The term with its contrast to supervised suggests that there is a

binary distinction between two manners of analysis. However, looking at the task defi-

nition of Morpho Challenge, an annual competition of unsupervised morpheme analysis

approaches, we get the impression of a more vague meaning:

“The task is the unsupervised morpheme analysis of every word form con-

tained in a word list supplied by the organizers for each test language. [. . . ]

Solutions, in which a large number of parameters must be ‘tweaked’ sepa-

rately for each test language, are of little interest. This challenge aims at the

unsupervised (or very minimally supervised) morpheme analysis of words.”2

It seems there is a degree of supervision rather than a binary distinction. So apparently

when using the term unsupervised, one should make clear up to which degree an approach

still counts as unsupervised. Additionally, the question is which knowledge is allowed to

be taken into account and which not.

To find a clearer definition, we may look into other areas where the terms supervised

and unsupervised are used – as for instance in machine learning. According to (Jurafsky

and Martin, 2000, page 117),

“[. . . ] a supervised algorithm is one which is given the correct answer for

some of this data, using these answers to induce a model which can generalize

to new data it hasn’t seen before. An unsupervised algorithm does this

purely from data. While unsupervised algorithms don’t get to see correct

labels for the classifications, they can be given hints about the nature of

the rules or models they should be forming. [. . . ] Such hints are called a

learning bias.”

Transferring this definition from machine learning to morpheme segmentation, we could

call an approach supervised, if it is taking words split into morphemes as input and

inducing a segmentation model out of these. An unsupervised approach is then one

using only raw words as they appear in unprocessed language data. Our later decision

to use formal analogies is our learning bias.

But even unsupervised approaches that only take unlabeled data often use parameters,

thresholds and models that are set and selected manually. Eventually, one might ask

if requiring the input data to be from a single language is not already a supervised

2http://research.ics.tkk.fi/events/morphochallenge2007/rules.shtml
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pre-selection of the input.

Besides, our definition coming from machine learning does not help us at classifying

segmenters that do not learn at all but that are built out of handcrafted, language-

specific rules created by the hard work of one ore more linguists finding a model for the

morphology of the given language and then formalizing it. Here, the term supervised

morpheme segmentation seems also convenient.

So in order to clarify the expected input of the approaches I am discussing, I want to

give the following definition:

The input data for unsupervised morpheme segmentation may not contain

any linguistic or language-specific knowledge at all – except that all of the

input must be part of a single language.

In other words: The same system using the same parameters must work for different

languages.

2.5. More Restrictions

2.5.1. Number of morphs

We do not limit the number of possible morphs in a word. So since we operate on

character level, every word may contain up to as many morphs as it contains characters.

Imposing a morpheme limit would mean to pick an appropriate number of maximum

morphemes per word. Such a number would very probably be language-dependent, thus

violating our constraint of language independence. And especially the performance of

our segmenter on agglutinative languages would suffer from a morpheme number limit.

2.5.2. Concatenative vs. Non-concatenative

A language may have concatenative or non-concatenative morphology, or even a com-

bination of both. In the first one, “a word is composed of a number of morphemes

concatenated together”, without any change to the morphemes themselves. An exam-

ple for concatenative morphology is the singular form of finger concatenated with s to
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fingers in the plural.

In contrast, non-concatenative morphology combines morphemes in a more complex way,

intermingling the morphemes. See for example foot becoming feet in the plural (Jurafsky

and Martin, 2000, page 60).

Since our task here concerns only segmenation of words into morphs without any further

modification, we restrict ourselves in recognizing only concatenative morphology.

2.5.3. Single words vs. Context

Approaches of unsupervised morpheme segmentation may also differ on the question if

their input is only a list of words or if they use a corpus of sentences. In the latter case

we may use the context of the words to group them into different categories and then

do for a category specific morpheme segmentation.

For the scope of this thesis we assume to have only a list of words as input.

2.6. Summary

This chapter described the relevance of (unsupervised) morpheme segmentation. Its

main practical purpose can be seen in the reduction of input forms to simplify further

steps of Natural Language Processing, such as Part-of-Speech tagging.

We want to do this in an unsupervised manner: We require the input data to be unlabeled

– but from a single language. The segmenter must be able to split words into an unlimited

number of morphemes (with the word’s character count being the natural limit). We

restrict ourselves to recognize only concatenative morphology.

As a crucial point, the problems in the definition of allomorphy were pointed out. It

seems as it is an issue rather to be handled in lexical than in morphological analysis.

Therefore, we step back from trying to merge allomorphs into morphemes and restrict

ourselves to find morphs.
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3. Formal Analogies

3.1. Introduction

3.1.1. History

The notion of analogy has a long history in Western thought, an example of mentioning

the concept can be already found the work of Plato. The word is based on the “Greek

term for geometric or numeric proportions, ratios or symmetries. That is, it referred to

the arrangement of two sets of numbers or geometric forms, such that the numbers or

forms within each set are related by the same mathematical operator, transformation,

or scale (ana logos = ‘same logic’ or ‘according to a ratio’).” (Hoffman, 1995, page 5)

It can be basically seen as a relation between four items as in 3.1 where : denotes the

just mentioned “same mathematical operator”. An example would be the relation in 3.2

where “:” stands for the operation “times two”:

A : B :: C : D (3.1)

1 : 2 :: 2 : 4 (3.2)

3.1.2. Analogies in language

Analogies in language, which we will be concerned with, appear in the writings of de

Saussure, e.g., in (de Saussure, 1959, page 161), giving an example from Latin:

oratorem : orator :: honorem : honor (3.3)

an analogy, which led the previously used form honos change to honor. Here, the

operator “:” describes an operation changing oratorem to orator and honorem to honor.
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vane
f−→ /vejn/

↓ g ↓ h
sane

f−→ /sejn/

reactor
f−→ reaction

↓ g ↓ g
factor

f−→ faction

Figure 3.1.: Analogical relations on two domains (left) and on one domain
(right)

It applies the same operation to both words left of it – in this case, it is deleting em.

While de Saussure writes then many paragraphs about the role of analogy in language

evolution, he provides no exact definition of analogies. For stating whether oratorem :

orator :: honorem : honor is an analogy and oratorem : orator :: honorem : emhonor

is not, the reader apparently must rely on his own intuition.

3.1.3. Towards a Definition via Solving Analogical equations

The need for providing an exact formal definition was raised eventually in practice when

trying to construct analogy solvers, i.e., a program that given the first three items

generates the fourth one:

oratorem : orator :: honorem : X ⇒ X = honor (3.4)

Such a program would obviously need an exact algorithm. While there has been a lot

of work in the Artificial Intelligence (AI) community (Hall, 1989), one of the first works

providing a such one for analogies on words is (Lepage, 1998), giving also the basics of

a formal definition I will use in this thesis.

Lepage points out a cornerstone important for solving analogies on words: All of the

four items need to be from one domain, that of words (Lepage, 1998, page 2). This is a

crucial difference to AI approaches, where the items may be part of two domains, as in

the left example of Figure 3.1, taken from (Pirelli and Federici, 1994).

Here, the analogy connects two domains: words in graphemic and in phonemic represen-

tation. This leads to the need of three relations, as we have three different combinations

of input and output types (i.e., domains and ranges):

1. graphemic to phonemic: f
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2. graphemic to graphemic: g

3. phonemic to phonemic: h

The problem is that we cannot unify g and h, as symmetry would suggest, since the

type of changes that both functions perform may be very similar to each other but not

exactly the same: g is changing the graphemes v to s while h is changing the phonemes

v to s.

In contrast to that, analogies on words operate only within one domain, i.e., that of

words, as seen on the right in Figure 3.1 (Lepage, 1998, page 2). Because of this, we

come down from three to two relations. We still need two and not one, since the operation

from reactor to factor is a different one as to reaction. However, we may swap f and g

or swap reaction and factor and still have a valid analogy – an important property we

will need later.

Lepage calls such analogies on words morphological analogies, a promising notion for the

task of this thesis. Moreover, regarding our goal to do unsupervised morpheme segmen-

tation, “morphological analogies can be regarded as simple equations independent of any

knowledge about the language in which they are written. This standpoint eliminates

the need for any knowledge base or dictionary.” (Lepage, 1998, page 2)

3.2. Definition

While Lepage (1998) formulates an algorithm for solving analogical equations on words,

we still need a clear formal definition stating the constraints that four words need to

fulfill to be an analogy. A such one provide (Yvon et al., 2004, page 7):

“Analogy is a quaternary relationship defined over (Σ∗)4. We say that

(x, y, z, t) ∈ (Σ∗)4 stand in analogical relationship, noted x : y :: z : t if

and only if ∃{(xi, yi, zi, ti) ∈ (Σ∗)4}i∈[1,n] s.t.:

x1 · · ·xn = x, y1 · · · yn = y, z1 · · · zn = z, t1 · · · tn = t and (3.5)

∀i ∈ [1, n], (yi, zi) ∈ {(xi, ti), (yi, zi)}. (3.6)

The smallest integer n for which this analogy holds is termed the degree of

the analogy. ”
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i 1 2 1 2
x la y a a
y la id a b
z sa y b a
t sa id b b

Figure 3.2.: Factorization of lay, laid, say, said fulfilling the analogy defini-
tion

Putting this in prose, it must be possible to factorize every of the four given words

in a way that every factor quadruple is of the form (a, a, b, b) or (a, b, a, b). Such a

factorization with the example of say : said :: lay : laid is depicted in Figure 3.2, where

the first column is of the form (a, a, b, b) and the latter one of the form (a, b, a, b). In terms

of our definition, (y1, z1) = (x1, t1) and (y2, z2) = (t2, x2)1. As there is no factorization

with less than 2 factors, 2 is also the degree of this analogy2.

With this definition, we can also create a solver3 for analogical equations like:

x : y :: z : X ⇒ X = {t1, . . . , tn} (3.7)

3.3. Properties

Given the previous definition, the following properties hold.

1A factor may also be the empty word, e.g., for say : says :: lay : lays a possible factorization is
(say, say, lay, lay)(ε, s, ε, s).

2However, this is not the only minimal factorization, since also (l, l, s, s)(ay, aid, ay, aid) fulfills the
analogy equation. This ambiguity will also concern us later.

3As indicated, such a solver does not necessarily have an unique solution, there may be even more
than one solution – also more than one with the lowest degree. See for instance: a : ab :: ac : X ⇒ X =
{abc, acb, . . . }
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3.3.1. Equivalences

Regarding the order of the items, the following equivalences exist (Yvon et al., 2004,

pages 6 and 8):

x : y :: z : t⇔ z : t :: x : y Symmetry of the as relation (3.8)

⇔ x : z :: y : t Exchange of the means (3.9)

⇔ y : x :: t : z Inversion of ratios (3.10)

⇔ t : y :: z : x Exchange of the extremes (3.11)

⇔ t : z :: y : x Symmetry of reading (1) (3.12)

⇔ y : t :: x : z Symmetry of reading (2) (3.13)

⇔ x : z :: y : t Symmetry of reading (3) (3.14)

In short, if we imagine an analogy as a square with the edges as words, we can rotate

and flip it as we want – but we cannot start folding or ripping it because: x : y :: z :

t< x : y :: t : z.

Furthermore, the following two trivial equations must have an unique solution which

they have according to our definition(Yvon et al., 2004, pages 6 and 8):

x : x :: z : X ⇔ X = z Determinism (1) (3.15)

x : y :: x : X ⇔ X = y Determinism (2) (3.16)

3.3.2. Character count property

A very important property for practical applications is the character count property

(Langlais and Yvon, 2008, page 3) – called there the “T-Trick”:

x : y :: z : t⇒ ∀c ∈ Σ : |x|c + |t|c = |y|c + |z|c (3.17)

Given the example [say : said :: lay : laid], for instance the count of y in say and

laid must be equal to the one in said and lay. The same accounts for non-occurring

characters, e.g., m – here we just have 0 on both sides of the equation.
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3.3.3. Boundary character property

Another property of analogies may be called the boundary character property, presented

in Langlais and Yvon (2008, page 4) as the “S-Trick”:

x : y :: z : t⇒ (x1 ∈ {y1, z1}) ∨ (t1 ∈ {y1, z1})∧ (3.18)

(x|x| ∈ {y|y|, z|z|}) ∨ (t|t| ∈ {y|y|, z|z|}) (3.19)

For instance, looking again at [say : said :: lay : laid], the first character of say, s, must

be also the first character in said or lay. Or the first character of laid, l, must be also

the first character in said or lay. In this case, both requirements are fulfilled, only one

would be sufficient. The same accounts for the last characters of the words.

These equivalences and properties can be used in reducing the computational problem

we encounter when searching for analogies within a large item list. Subsection 3.4.3 will

show this problem briefly within the application of analogical learning; in section 5.2,

a filter will be described in detail using these properties for the presented segmenation

system of this thesis.

3.4. Applications: Analogical learning

3.4.1. Basic idea

Having seen the formal foundation of analogies, we want to take a brief look on com-

mon applications of them. A much-used one can be subsumed under the framework of

Analogical learning, discussed first by (Pirrelli and Yvon, 1999).

Given a supervised learning task of mapping an input item tI to an output item tO

(possibly yet to be generated) and given only other mappings as the knowledge base, we

proceed with the following steps:

1. find one or more triples (xI , yI , zI) such that xI : yI :: zI : tI

2. map xI , yI , zI to their counterparts xO, yO, zO using the knowledge base

3. generate tO solving the analogical equation xO : yO :: zO : X ⇒ X = tO

23



x : activités − y : futilités
| |

z : activité − t : futilité
(1)

→
(2)

x : actions − y : gimmicks
| |

z : action − t : X ⇒ X = gimmick
(3)

Figure 3.3.: Translating the French word futilié to English using a lexicon
that only contains futilités, activités, activité and their trans-
lations. In step (1), we search for appropriate triples and find
(activités, activité, futilités ). In (2), we map the items from
the input to output domain, i.e., we translate them according to
their lexicon entries. Eventually, we generate our solution, i.e.
our translation in step (3). This is a simplified example taken
from (Langlais and Patry, 2007).

3.4.2. Examples

For instance, the input domains may be words and the output domain their Part-of-

Speech tags – and we would have a tagger. Or we have words or sentences from one

language as input and from another language as output, thus having a machine trans-

lation system. Figure 3.3 depicts how the latter one works on an example.

Research work on applications of this framework has been done by Lepage and Denoual

who built a machine translation system with this framework based on analogies on

sentence-level, Langlais and Patry (2007) used it for translating unknown words, Pirrelli

and Yvon (1999) give the example of words as input and their pronunciations as output

domain.

Relating to morpheme analysis, the work of Stroppa and Yvon (2005) is worth men-

tioning: With the title “An analogical learner for morphological analysis”, they have

implemented and evaluated the above mentioned POS tagger, using a list of tagged

words and trying to tag remaining words. In contrast to the task of this thesis, this

approach is supervised, since it needs labeled examples as input.

However, one can imagine further applications of this framework: For instance, one could

create syntax trees or semantic representations out of sentences given a list of sentences

and their trees or representations. Actually, any processing from one linguistic level into

another, be it graphemic to phonemic, or syntactic to semantic, could possibly be done

using the analogical learning framework.
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3.4.3. Problems

Nevertheless, the approach has problems. One of them is computational: While the

mapping step is trivial and the generating (solving) step was examined and apparently

well solved by many approaches (Lepage, 1998; Yvon, 2003; Yvon et al., 2004), the first

finding step is a priori computationally very expensive. It requires to test all possible

triples of the input items in the lexicon, i.e., given a lexicon of size n, this means
(
n
3

)
steps. However, Langlais and Yvon (2008) present an interesting approach using the

count property to minimize the computational cost. This property will also be used by

the filter used for the segmentation system, described in section 5.2.

Other problems related to the machine translation approach by Lepage and Denoual are

described in detail by Somers et al. (2009).

3.5. Summary

This chapter gave an overview on formal analogies and in particular, on analogies in lan-

guage. While the general notion was already mentioned by Plato, de Saussure examined

the influence of analogal relations in language change.

We then took a closer look on the definition for formal analogies, as given by (Yvon

et al., 2004). Since formal analogies rely only on the form, that is, the surface of the

words, just the set and order of characters is relevant, not their meaning. This enables

us to find analogical relations without any further (linguistic) knowledge.

We learned about equivalences and two necessary conditions that formal analogies must

fulfill: the character count property and the border character property. Both will help

us in searching analogies within a large input space.

Finally, we explored briefly a common application of analogies: the analogical learning

framework, a generalized approach using analogies for solving various linguistic problems,

from Part-of-Speech tagging to machine translation.
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4. Previous Work

4.1. Introduction

Now we want to take a look on previous approaches of Unsupervised morpheme segmen-

tation. Various work in this field has appeared in the recent years, probably encouraged

by the annual Morpho Challenge conference. An overview of the best participating al-

gorithms along with evaluation results can be found in (Kurimo et al., 2010). A very

comprehensive and categorized list of previous works in this area can be found in (Ham-

marström, 2009, page 16 ff.).

One system is Morfessor (Creutz and Lagus, 2005), a purely quantitative approach,

that achieves state-of-the-art results and thus often used as a benchmark algorithm as

in (Kurimo et al., 2009). Another one is Linguistica (Goldsmith, 2006), a bit older than

Morfessor which learns morphological paradigms and already uses the notion of analogy

– however, not in the formal and generalized way as defined in the previous chapter.

Both approaches use the Minimum Description Length (MDL) framework to evaluate

their generated segmentation models, so before describing the approaches, I will give a

brief introduction into the MDL framework.

Finally, I will describe Rali-Ana / Rali-Cof by Lavallée and Langlais (2009a), a very

recent approach very similar to my one, as it uses formal analogies to generate the basic

morpheme candidates. However, it does not use MDL for evaluation.

The performance of the three main presented approaches will be compared in section

4.7, the systems will be discussed in the last section 4.8.

But to start, I want to give an overview of the oldest approach: the one of Harris (1955).

It looks for peaks in letter successor frequencies to find morpheme border candidates.
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Figure 4.1.: Trie representing the words governed, governing, government,
governor, governs, govern and going. According to Harris’ ap-
proach, position 6 indicates a morpheme boundary because of its
big “fertility”.

4.2. First Approach: Peaks in Successor Frequency

One of the first works on Unsupervised morpheme segmentation is the approach of Harris

(1955). His idea is also well described in (Goldsmith, 2006, page 5 ff.).

4.2.1. Idea

Harris’ approach was basically this: Given a list of words with the same prefix, for

instance gover, and looking at the very next letter of that prefix, the successor, we

would ask how many different letters appear as successors. In the case of gover, we

would probably only find n, so the successor frequency would be 1. However, looking

at the successors of govern, we would find words as governed, governing, government,

governor, governs and govern – 6 different letters, thus a successor frequency of 6. Hence,

we would assume a morpheme boundary after govern, based on the assumption that a

high successor frequency indicates a morpheme boundary.

The idea may be implemented in a word tree structure, called a trie, with a root node

where all words are starting and edges to following nodes representing the letters of the

words. Only one edge with the same letter leaving a node is allowed.

In such a trie, as depicted in Figure 4.1, every node’s left path represents a list of words

with a common prefix. All leaving edges represent possible successors of the words.

Thus, very “fertile nodes” with many edges would indicate morpheme boundaries.
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4.2.2. Problems

Goldsmith (2006) notes the problems of that idea. Firstly, the variety of successors is

very big at the beginning of words, especially within the first 3 letters, thus making it

difficult to find morpheme boundaries there. Additionally, the idea has a bias regarding

to vowels and consonants:

“Since there are more consonants than vowels, and since vowels tend to

follow consonants, just as consonants tend to follow vowels, there is a strong

tendency for the successor frequency to be larger after a vowel than after a

consonant within the first 3 letters of a word, and hence for this algorithm

to find a (spurious) morpheme break after any vowel in the first 3 letters of

a word.”(Goldsmith, 2006, page 6)

Additionally, one must choose a manual threshold for the successor frequency represent-

ing a morpheme boundary – or rely on local maxima. Neither works well in English,

according to (Hafer and Weiss, 1974), a paper presenting an improved approach based on

this one. Also Goldsmith (2006) tries to improve the approach with various heuristics,

however eventually stating in (Goldsmith, 2007):

“[. . . ] such a purely local method does not work, and some more global

characteristics of the overall grammar need to be taken into consideration.”

An approach considering the “overall grammar” is Linguistica, described in section 4.4,

which uses MDL for evaluating its candidates. As MDL is also used by Morfessor, I will

first give a separate introduction into MDL.

4.3. Minimum Description Length

4.3.1. Idea

The Minimum Description Length framework (MDL) was first presented in (Rissanen,

1989) and is also described in (Goldsmith, 2007, page 4 ff.). It deals with the following

question:

Given any data, how can we compress it in a model such that
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1. the model can generate as much as possible of the data (is not under-

fitted) and

2. the model is as small as possible (is not overfitted).

4.3.2. Mathematical Formulation

We can also see the MDL task as trying to find the model that produces the highest

probable model given the data – and then applying Bayes’ rule (Jurafsky and Martin,

2000, page 146):

arg max
model

P (model|data) = arg max
model

P (data|model) · P (model)

P (data)
(4.1)

Since we are not looking for the actual probability, but only for the model generating

it, we may leave out the hard-to-calculate denominator P (data), as the data is constant

accross the models being tested, and so its probability would always be the same:

arg max
model

P (model|data) = arg max
model

P (data|model) · P (model) (4.2)

We may now take the negative log of both sides of the equation. With this operation, we

switch from looking for the highest probable model to looking for the optimally encoded

(i.e., the shortest) model. The first one is a Maximum a posteriori (MAP), the latter

the Minimum Description length formulation of the same problem. Both are equivalent,

as shown by (Chen, 1996, page 64).

As the negative log of an increasing number is decreasing, we are now looking for

arg minmodel:

arg min
model

− log(P (model|data)) = arg min
model

(− log(P (data|model))) + (− log(P (model)))

(4.3)

4.3.3. Meaning of the Formulas

At this point, we can see the two conditions mentioned before under which we want to

find the optimal model:
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1. log(P (model)) represents the size of the model that should be as small as possible,

i.e., no overfitting – I will also use length(model). This value decreases, the less

and the shorter morphemes are that we store in the model (usually we start with

the maximum with every word being a morpheme). For instance, [lay, say, s] is

shorter than [lay, say, lays, says].

2. log(P (data|model)) stands for generating the data as well as possible, i.e., no

underfitting – I will also use length(data|model). This value decreases, the higher

the probabilities it assigns to the given data.

The sum of both shall be as small as possible, hence Minimum Description Length.

4.3.4. Relevance for Morpheme Segmentation

As already mentioned, the idea of using MDL on Morpheme Segmentation is to create a

model of morphemes and their distribution, then to try to represent the data using the

model while measuring the size of both added.

We may note that thus the basic assumption by using MDL here “is that meaning can

be ignored in the process of inferring or inducing the morphological structure of a word

or a language” (Goldsmith, 2007, page 9) – an assumption that Goldsmith even calls

“controversial”. On the other hand, he sees the “reuse of a grammatical object (such as

a morpheme, a context, or anything else) is the best kind of evidence we can have of the

linguistic reality of the object.”(Goldsmith, 2007, page 12).

4.3.5. Evaluation of a Model vs. Search for a Model

We may now have a procedure how to evaluate a given model, however, we still need

a way how search for one, i.e., how to generate a candidate model and then change it

according to the temporary result that MDL gives. This is why even if given a sound

mathematical model, we still need linguistic theory, or as (Goldsmith, 2007, page 8) puts

it 1:

“[. . . ] the purpose of linguistic theory is to serve as a set of heuristics to help

the linguistic scientist come up with a tight, snug grammar, given a set of

1using “grammar” for “model”
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data. MDL can determine which of a set of grammars is the best one, given

the data; no feasible process can search all possible grammars, so there is no

guarantee that another linguist will not come along tomorrow with a better

grammar for the data.”

In the following sections, we will learn about the search procedures of Linguistica and

Morfessor, two approaches using MDL for evaluation. Basically, both search for redun-

dancy in the data but differ in how this redundancy is expected; thus, how the model is

structured.

4.4. Linguistica

4.4.1. Introduction

The approach of Linguistica is described in the papers of (Goldsmith, 2001, 2006, 2007).

While the first two give the mathematical foundations, the latter one gives the best

introduction into the motivation and the general idea. The approach is implemented in

software that is freely available on the Internet 2.

Linguistica takes as input an unannotated list of words of a language. Then, it creates

so-called signatures, each containing a list of stems and suffixes representing the mor-

phological paradigm of a group of words. These signatures can be used to simply split

the words into stem and affix, i.e., to solve the task of morpheme segmentation – but

they also give us information about the morphological structure of a language, as they

group words of the same morphological paradigm.

As the signatures only contain stems and suffixes, we may get the impression that a

word may contain at most two morphemes. But in fact, the stems are allowed to be

recursive, they may point not only to an actual stem but also to another signature, that

contains a stem and a suffix (Goldsmith, 2001, page 13).

We may note that although a recursive structure of signatures is allowed, the input

words are expected to have a limited number of morphs:

“While some of the discussion is relevant to the unrestricted set of languages,

2http://linguistica.uchicago.edu/
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Stems

t1 = jump

t2 = walk

t3 = crawl

t4 = do

t5 = go

· · ·

Affixes

f1 = NULL

f2 = ed

f3 = ing

f4 = s

f5 = es

· · ·

Signatures


t1
t2
t3



f1

f2

f3

f4


{
t4
t5

}
f1

f3

f5


· · ·

Figure 4.2.: Model structure of Linguistica. The first signature captures
crawl, jump and walk, the second one do and go with their suf-
fixes. From (Goldsmith, 2006, page 4).

some of the assumptions made in the implementation restrict the useful appli-

cation of the algorithms to languages in which the average number of affixes

per word is less than what is found in such languages as Finnish, Hungarian,

and Swahili, and we restrict our testing in the present report to more widely

studied European languages. Our general goal, however, is the treatment of

unrestricted natural languages.” (Goldsmith, 2001, page 1)

An approach dealing with words containing many morphemes is the later published

Morfessor, presented in the section 4.5.

4.4.2. Model structure

The model of Linguistica tries to find morphological paradigms of stem and suffix alter-

nations. An example structure can be seen in Figure 4.2. It is based on three components

(Goldsmith, 2006, page 3):

1. a list of stems t1···|T |,

2. a list of suffixes f1···|F |,

3. a list of signatures with pointers to stems and suffixes σ1···|Σ|

As we note, only the list of stems and suffixes contain their actual strings, everyone of

them only once. The signatures then contain pointers to the entries in the stem and
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suffix lists. Every stem (but not every suffix) is linked to exactly one signature. Hence,

every stem receives only one pointer from a signature. In contrast, a suffix may receive

several pointers from different signatures. There are no different signatures with the

same set of stem or suffix pointers, as they would be merged into one signature.

A signature may also be pointing not to a simple but to a complex stem. Such a pointer

does not link to an entry in the stem list but to another signature. Thus, the system

allows a recursive structure.

4.4.3. Probabilities / Lengths

Now we will learn how the contents of these three components emerge and change, given

some data in form of a corpus or word list. We will also take a look on how the system

assigns probabilities, hence how we calculate the length(model) and length(data|model).
As the model allows various special cases like complex stems (a stem pointing to another

stem and suffix), the description here will just give an overview. How the probabilities

are calculated in detail, can be followed in (Goldsmith, 2001, page 17).

Notational preliminaries

As already stated, we use T, F,Σ for the set of stems, suffixes and signatures, additionally

W for the set of all words in the data. Lowercase letters as t, f, σ, w will be elements

of their sets, hence a particular stem, suffix etc. [W ] stands for the number of word

tokens, 〈W 〉 for types in the data. The same accounts for T, F,Σ etc. (Goldsmith, 2001,

page 14). We also need to encode the length of the lists and will do this using the

function λ(x) where x is the size of a given list, e.g., 〈T 〉.3

For calculating the length of a string (within the stem or affix list), we will use the

function Ltypo(x) returning in its simplest definition the length of x times log2 26, since

we assume an alphabet with 26 letters, all with the same probability 4.

3The function returns around log2 x.
4A more sophisticated definition assigns different weights to the letters according to their frequency

in the data.
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Model

Let us start with the probability of the model, i.e., length(model). It is the sum of he

stem, the suffix and the signature list – and all three are basically calculated in a very

similar way (Goldsmith, 2001, page 15):

length(model) = λ(〈T 〉) +
∑
t∈T

Ltypo(t) (4.4)

+ λ(〈F 〉) +
∑
f∈F

Ltypo(f) (4.5)

+ λ(〈Σ〉) +
∑
σ∈Σ

L(σ) (4.6)

In all three cases, we first need the encoded length of the given list calculated by the λ

function. Besides, we take the sum of the length of all items of the lists: for stems and

suffixes this will be the length of their strings, calculated by the function Ltypo.

The length of a signature L(σ) is a bit more complicated. We will denote T (σ) (resp.

F (σ)) as the set of all stems (resp. suffixes) that a signature σ is pointing to. w(f)

(resp. w(σ)) are all words with the suffix f (resp. signature σ).

L(σ) = λ(〈T (σ)〉) + λ(〈F (σ)〉) +
∑
t∈T (σ)

log(
[W ]

[t]
) +

∑
f∈F (σ)

log(
[W ]

w(f) ∩ w(σ)
) (4.7)

While this formula looks a bit messy on first sight, it is actually quite symmetric. Firstly,

we need the encoded lengths of both the stem and the suffix list of the current signature,

i.e., the first two addends. The following two log sums then are the pointers to the actual

strings in the stem and suffix lists. A pointer gets its length assigned by the relative

frequency of the item it is pointing to. As we want the negative log probability, we swap

numerator and denominator5.

In the same fashion, the second log sum is constructed. It is the sum of all pointers to

suffixes that the current signature is using. But while every stem is associated to exactly

one signature, this is not the case for suffixes. Hence, we need a more complicated

denominator in the last addend (Goldsmith, 2001, page 15).

5since − log(ab ) = log( ba )
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Data given the model

We now come to the second part of the MDL formula, the probability of the data

given the model, i.e., length(data|model). It is the sum of the assigned negative log

probabilities of all the words in the corpus (Goldsmith, 2001, page 15) 6:

length(data|model) =
∑

w∈W,w=t+f

[w]·((− logP (σ(w))) (4.8)

+ (− logP (t|σ(w))) (4.9)

+ (− logP (f |σ(w)))) (4.10)

Looking at the formula in top-down fashion, we are summing over the lengths of all

words. For every word token w, we calculate its length according to the probability

1. of the signature generating w, i.e., σ(w),

2. of the stem t of w given the signature σ(w),

3. of the stem f of w given the signature σ(w).

These probabilities are again all relative counts7:

∑
w∈W,w=t+f

[w] · (log
[W ]

[σ(w)]
+ log

[σ(w)]

[t(w)]
+ log

[σ(w)]

[f(w)]
) (4.11)

4.4.4. Search procedure

We now have a method how to measure the “quality” of a given model and thus we are

able two compare two different models and tell which one is better. But we still need a

method for coming up with an initial model and how to adjust a given model so that it

improves. Heuristics for these tasks are explained in the following.

The search procedure consists of three main steps:

1. Proposing an (exactly one) initial split for every word.

2. Creating signatures out of the split words.

6In the paper, the middle addend is written as P (t) (instead of P (t|σ(w)). I assume this to be an
error, as in the summary of page 18, the formula is rewritten, with middle addend depended on σ(w).

7And again in order to incorporate the negation of the log, we swap numerator and denominator.
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3. Adjusting signatures as long as the MDL improves.

Initial splits

(Goldsmith, 2001, page 19 ff.) explains two heuristics how to come up with various initial

splits for every word from which we choose one. The first one considers all possible splits

of a word into a stem and a suffix. Probabilities for every split are assigned based on a

Boltzmann distribution. For every word, the split with the highest probability is taken.

This may also lead to splits into prefix and stem, for instance at the word de-composition.

This heuristic leads to a split for every word, even such ones that actually only consist

of one morpheme such as stomach and this.

The second heuristic operates with a suffix n-gram count. Every word gets an end-of-

word marker # added and then, for all 2- to 6-letter n-grams the following likelihood is

calculated:

[n1n2 · · · , nk]
Total count of k-grams

log
[n1n2 · · ·nk]

[n1][n2] · · · [nk]
(4.12)

This likelihood can be seen as a weighted mutual information and is used as an indicator

of a n-gram being a candidate suffix. The approach stops at 6 letters as it is not expecting

longer suffixes. The top 100 n-grams are chosen to be candidate suffixes and every word

is split using these candidate suffixes.

As will be pointed out in the section 4.8, it is these (rather complicated and probably

noisy) heuristics for finding initial splits that may be replaced with methods based on

formal analogies.

Creating signatures

We do now have the words split into a candidate stem and suffix (sometimes into a

candidate prefix and stem) – but they are not yet merged into signatures. To do this,

we create a list for every stem with all its suffixes the stem appears with. For instance,

for (walk, walks, walked, walking) we get the signature (NULL, s, es, ing). All stems

with the same suffix list are merged together into one signatures.

Having done this, we discard all signatures with only one stem and with only one suffix.
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What remains, are so-called regular signatures with at least two stems which according

to (Goldsmith, 2001, page 21) are a “very good approximation and constitute a good

initial analysis”.

Adjusting signatures

Even while being a good first approximation, the model still contains some flaws at this

stage. These and the various heuristics dealing with them are described in the following.

For all tweaks of the model, “the entire description length of the corpus is recomputed

under the alternative analysis; the reanalysis is adopted if and only if the description

length decreases.” (Goldsmith, 2001, page 25).

Collapsing of two suffixes into one In the analysis of English, we will probably

find suffixes as ings and ments, which both are actually only combinations of two also

existing suffixes. To find them, every suffix is checked if it can be created out of to other

ones. In the mentioned examples, we will very probably find ing / ment and s.

Suffix contains stem-final material If a letter in a language appears very often at

the end of stems – as t does in English – it may be wrongly analyzed as part of the

suffix. ted.ting.ts and ted.tion (generated from words like existed, existing, exists, acted,

action) are candidate suffixes in English related to this problem. To find such analyzes,

the suffix list of every signature is checked if all suffixes begin with the same letter, and

if they do, this very letter is moved to the stem.

Spurious signatures Looking still at English, there are many words ending with s

and in many of them s is a morphological suffix, marking the third person of a verb or

the plural of a noun. But this is not the case for all words, as the example of the very

word spurious shows. On the other hand, every word ending with ness uses these four

letters as a suffix. As apparently the length of the suffix plays an important role, the

system uses this measure to find out whether a candidate suffix is also an actual suffix

for this words.
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Allomorphy Linguistica even contains some heuristics to find allomorphy. Alterna-

tions like win(s) and winn(er)(ing) are found by checking every pair of stems whether

they be related by a simple substitution process, like adding, deleting or replacing a

letter.

4.5. Morfessor

4.5.1. Introduction

The approach of Morfessor is described first in (Creutz and Lagus, 2002), another short

description is presented in (Creutz, 2003), and a more extended description is given in

(Creutz and Lagus, 2005). Like Linguistica, Morfessor uses the distributional measure

of MDL to evaluate its model, however the later paper of (Creutz and Lagus, 2005)

replaced it by a Maximum a posteriori (MAP) formulation. But both are considered

equivalent and produce the same results. As the following description is based on the

latter paper, also the MAP formulation will be used here.

Morfessor is free software released under the GNU GPL8.

Like Linguistica, Morfessor takes a word list (with optional word frequencies) as input.

It then only outputs the same word list with the words split into morphs. So the system

does not try to find allomorphs of a morpheme nor to categorize the found morphs in

any way, nor does it group words with the same morphological paradigm.

In contrast to Linguistica, Morfessor was designed to work especially with words contain-

ing many morphemes, i.e., with agglutinative morphology. As the authors formulated

it:

“Many algorithms proceed by segmenting (i.e., splitting) words into smaller

components. Often the limiting assumption is made that words consist of

only one stem followed by one (possibly empty) suffix [. . . ]. This limitation is

reduced in (Goldsmith, 2001) by allowing a recursive structure, where stems

can have inner structure, so that they in turn consist of a substem and a

suffix. Also prefixes are possible. However, for languages with agglutinative

morphology this may not be enough. In Finnish, a word can consist of

8available at http://www.cis.hut.fi/projects/morpho/
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lengthy sequences of alternating stems and affixes.” (Creutz, 2003)

Thus, Morfessor allows an unlimited number of morphs per word. Additionally, it states

to be language-independent, however it allows to set parameters that may be language-

specific.

Various versions of Morfessor have been released, however, we will take a look only at

the so-called Baseline models implemented in Morfessor 1.0.

4.5.2. Model

Unlike Linguistica, Morfessor does not differentiate morphs into stems and suffixes. All

morphs are simply items in a list of morphs of length M : µ1 · · ·µM .

A word may contain an infinite number of morphs, the word’s character count being the

natural limit.

4.5.3. Probabilities

As already stated, Morfessor uses the Maximum a posteriori formulation (MAP) instead

of the Minimum Description Length (MDL). Both differ only minimally, to put it short,

MAP does not take the log of the probabilities, thus we calculate directly on the proba-

bility values, thus we are not adding but multiplying, thus we are looking for the model

generating the maximum probability, not the minimum length.

arg max
model

P (model|data) = arg max
model

P (data|model) · P (model) (4.13)

Data given the model

We now have got two factors whose product should be as big as possible. Let us begin

with the first one, P (data|model). This probability is computed straightforwardly as
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relative counts

P (µi) =
fµi
N

(4.14)

P (data|model) =
W∏
j=1

nj∏
k=1

P (µjk) (4.15)

where µ1···M are morphs of M types and N tokens in a corpus of W words, every word

containing n morph tokens.

Model

The second factor, P (model) is calculated differently in various Morfessor versions. In

the later, non-Baseline versions, the model is a joint probability of a lexicon and a gram-

mar, the latter modelling simple morphotactics, i.e., word inner syntax. The Baseline

models we are now talking about only use the lexicon which is a joint probability of the

properties of every morph µ in the set of M morphs.

P (model) = P (lexicon) = M ! · P (properties(µ1), · · · , properties(µM)) (4.16)

M ! accounts for the fact that there may be that many different orderings of a set of

M items – which share the same probability. As properties, only the morph frequency

P (fµ) and its string P (sµ) are considered, which are assumed to be independent of each

other.

P (properties(µ1), · · · , properties(µM)) = P (fµ1 , · · · , fµM )) · P (sµ1 , · · · , sµM ) (4.17)

In the simplest Baseline model, the frequency property is modeled implicitly, thus as-

signing all morphs the same probability 9

P (fµ1 , · · · fµM ) = 1/

(
N − 1

M − 1

)
(4.18)

The string property is about the length and the letters of the morph. In the simplest,

i.e., implicit modeling, the probabilities of the different morph strings are assumed to

be independent of each other. Furthermore, the string probability derives from the

9Note the difference between fµ used in the previous equation and P (fµ) used here.
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probabilities of its letters which are assumed to be independent of each other:

P (sµ1 , · · · sµM ) =
M∏
i=1

P (sµi) (4.19)

P (sµi) =

lµi∏
j=1

P (cij) (4.20)

lµi contains the length of a given morph and P (cij) are the individual probabilities of

every letter computed from the data by their relative frequencies observed there.

Implicit modeling is done with a special end-of-morph character # at the end of each

morph string. The probability of seeing a morph with length l is thus:

P (l) = [1− P (#)]l · P (#) (4.21)

which will be also part of the string property probability. As we see, this probability

decreases with an increasing l, we are thus having an exponential distribution where the

longer the morph, the smaller its length probability.

4.5.4. Search procedure

After initializing the model with every word type being a morph, a greedy search algo-

rithm is run over the morph lexicon in a different random order on every iteration. Every

morph is split recursively into two parts, the system calculates the overall probability

for every split and keeps the split with the highest overall probability. The iterations

are repeated until the increase of the overall probability is lower than a given threshold.

4.6. Rali-Ana and Rali-Cof

4.6.1. Introduction

The last previous work described here is the recently published approach of Lavallée and

Langlais (2009a). There exists another, slightly shorter paper (Lavallée and Langlais,

2009b). The approach uses formal analogies as described in chapter 3. Unlike the two
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other previous works described here, it does not use MDL nor any other measure based

on information theory for evaluation.

There is no implementation available online.

The system works as follows: Like the other presented ones, it takes an unannotated

list of words as input and segments the words into their morphemes. Depending on the

subsystem, it may do this based only on formal analogies or based on so-called cofactor

rules (short c-rules), created out of the analogy factorizations.

The system does not categorize morphs and allows an arbitrary number of morphs per

word.

4.6.2. Basic Idea

Given a word list, the algorithm searches for quadruples of words that form an analogy.

For every found analogy, the factorization with the lowest degree is calculated. For

instance, checking the quadruple (say, says, lay, lays) will find that it is an analogy and

possibly also tell us the factorization with the lowest degree of 2: (say, lay)(ε, s).

Based on this factorization that looks so promising for our task of finding morphemes, we

would continue to create rules out of the factors or simply use the factors for segmenting

the words into morphs. Both subsystems I will describe in the following.

As we see, the basic assumption of the approach is that the factors of formal analogies

are good candidates for linguistic morphemes.

However, we should already note a main flaw at this point: There may be more than

one factorization with the lowest degree. For the example above, there are two other

ones: (sa, la)(y, ys) and (s, l)(ay, ays). The paper does not state how the system deals

with such ambiguities, in a personal email conversation with me, the author Phlilippe

Langlais states that one of them is picked randomly. Looking ahead, in my approach I

tried to solve this problem by creating a factorizer that outputs all factorizations with

the minimum degree.
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4.6.3. Computational Problem

As will be discussed further in chapter 5, the search for analogies suffers from a compu-

tational problem: Analogies are quadruples of words, so in order to find analogies, one

has to find appropriate quadruples. Potentially, there are
(
n
4

)
quadruples in a list of n

words, given for example an average lexicon of n = 100, 000 words, we would need to

check around 4 · 1018 quadruples. Performing that many checks is infeasible for today

computers – and probably also for tomorrow ones.

Therefore, the authors use an algorithm for filtering quadruples described in (Langlais

and Yvon, 2008). However, this is an algorithm for searching suitable triples for a

given word in order to find analogies involving this word. So it solves a problem slightly

different to the present one: Here we have one big list of words and want to find analogies

within this list.

Unfortunately, the particular adaptation of this algorithm on the current problem is

not explained in the paper. In a personal email conversation, Philippe Langlais stated

that the algorithm is applied sequentially on every word in the input list, with a certain

timeout. All analogies that were found for this word within this time are collected.

Because of this time limit, a lot, possibly valid quadruples are not checked (Lavallée and

Langlais, 2009a, page 6), thus many analogies are not found, thus many words are left

as is (i.e., unsegmented) in the final analysis. This impacts recall in the pure analogical

systems, as we will see in the results section 4.7. To cope with that fact, so-called co-

factor based systems were developed that try to extract morphological rules out of the

found analogies, in order to apply them on words not covered by analogies.

4.6.4. Pure analogical subsystems

There are two pure analogical subsystems called (Rali-)Ana-Seg and (Rali-)Ana-Pair.

Ana-Seg

Ana-Seg simply uses the analogy factors as morphs and segments the words according to

them. However, there may be different factorizations of a word if it participates in more

than one analogy (which is virtually nearly always the case). For instance abolishing
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may be part of the two different analogies, leading to two different factorizations, thus

to two different segmentations:

abolishing : polishing :: abolish : polish⇒ (ab, p)(olishing, olish) ⇒ ab+ olishing

(4.22)

abolishing : polishing :: doing : do⇒ (abolish, do)(ing, ε) ⇒ abolish+ ing

(4.23)

Hence, we need a way to pick a segmentation from the proposed ones. Ana-Seg simply

uses frequency: The most frequent segmentation is taken as the segmentation for the

word.

Ana-Pair

The second pure analogical system Ana-Pair does actually not solve the segmentation

task. Instead, for every word it creates a list of other words that share a morph with the

given word. For instance, for the word disabled, the list could contain enable (sharing

able), disprove (sharing dis) and walked (sharing ed).

Such a list suits the evaluation method of Morpho Challenge: Since the task does not

require the contributors to assign a certain set of morph categories, the contribution

systems are evaluated if they recognize words sharing the same morphemes.

As stated, this approach does not solve the task of this thesis as its output are not

segmented words. Therefore, we will omit it in the evaluative discussion.

4.6.5. Cofactor-based subsystems

Generating c-rules

The other two subsystems described in (Lavallée and Langlais, 2009a) are (Rali-)Cof-

First and (Rali-)Cof-Graph. Both calculate rules out of the cofactors, so-called c-rules.

For instance, based on an analogy like cordial : cordially :: appreciative : appreciatively,

we get the cofactors (cordial, appreciative), (ε, ly). The latter one we may use to con-

struct a rule like [∗ly → ∗ε] with ∗ marking possible context. As there is a ∗ at the
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beginning but not end, the rule may be only applied at the end of the words 10. The

left hand side cannot be shorter than the right hand side, hence |α| ≥ |β|.

Based on the latter restriction, we know that successive applications of a c-rule will

tend towards a shorter word and we assume that shorter words are also morphologically

simpler.

Filtering c-rules

The number of c-rules generated as described is usually enormous. Some of them like

[anti − ∗ → ε] capture a morphological relationship but there are also many spurious

ones found like [ka∗ → ε]. To filter out the latter ones, simple frequency does not help.

Instead, a measure called productivity is used and calculated as follows:

productivity(c-rule) =
valid results

applicable
(4.24)

applicable is the number of cases where a rule can be applied, i.e., where the left hand side

matches a word in the data. valid results then is the number of cases where application

of a rule also leads to a word that is in the data. For instance, we may apply [ka∗ → ε].

to a word like karl but we would not find the result rl in our data, hence it would be

not valid. On the other hand, we may apply [anti− ∗ → ε] to anti-alcoholic and would

probably also find alcoholic in the data.11.

With productivity, the anti − ∗ rule outweighs the ka∗ with score of 0.94 against only

0.24. Note that a rule with a low weight is not dropped. It can still be part of a path

with several rules within the Cof-Graph system, as explained in the following.

Building a Word-relation tree / graph

Using the c-rules, we are constructing a Word-relation tree (see Figure 4.3, respectively

a graph, where the words are connected based on the c-rules. This is the point where

the two subsystems Cof-First and Cof-Graph differ: In Cof-First, words can only be

connected if there exists a c-rule that leads from one word in the data to another word

in the data. In Cof-Graph, a connection is also possible if two words are connected via

10Consider [appreciative∗ → cordial∗] as the rule created out of the other cofactor.
11Examples taken from (Lavallée and Langlais, 2009a, page 4)
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[∗ed→ ∗e] [dis∗ → ε∗] [∗ing → ∗ed]

able ← abled ← disabled ← disabling

Figure 4.3.: Word-relation tree connecting the words able, abled, disabled and
disabling with c-rules generated out of co-factors. Taken from
(Lavallée and Langlais, 2009a, page 5)

more than one rules with intermediate words that are not part of the data. See for

instance the connection from disabled to able: In Cof-First, there must exist abled in

the data in order to make the connection.

The score of a connection between two words with several c-rules in Cof-Graph is calcu-

lated similar to (Hidden) Markov Models or Weighted Finiste-state machines over the

probability semiring: along one path, the productivity scores are multiplied, the overall

score is the sum of all path scores.

Obtaining morphs from the tree / graph

Based on the word-relation tree or graph, we now can obtain morphs. In a tree, the word

of the root node is a morpheme for itself. All words of other nodes get their morphs

from the c-rule pointing to their father merged with the morphs of their father. For

instance, the morphs of disabled are [dis, able, ed], since the word points to abled with

the rule [dis∗ → ∗ε and abled already is constructed of the morph set [able, ed] (based

on the rule [∗ed→ ∗e] and the root node able).

Note that using this method we are also able to capture a bit of allomorphy: Since c-rules

are not only deleting but also replacing, abled is analyzed with the morphs [able, ed].

4.7. Comparison of Performance

The challenge of this section is now to compare three different approaches. Truly valid

results on that can only be found by carrying out experiments on the same dataset.

However, the only results I have found related to this question are

• a comparison of Morfessor and Linguistica in the first publication about Morfessor

(Creutz and Lagus, 2002, page 7 ff.)
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Method Correct Incomplete Incorrect
Morfessor 49.6% 29.7% 20.6%
Linguistica 43.1% 24.1% 32.8%

Table 4.1.: Morfessor vs. Linguistica: Estimate of accuracy of morpheme
boundary detection based on visual inspection of a sample of 2500
Finnish word tokens, simplified from (Creutz and Lagus, 2002,
page 9).

• a comparison of Morfessor and Rali-Ana/Rali-Cof in the Proceedings of Morpho

Challenge 2009 (Kurimo et al., 2009).

I will present these numbers in the next subsections.

4.7.1. Morfessor vs. Linguistica

As the motivation for developing Morfessor was to have a segmentation algorithm for

languages with agglutinative morphology – for which Linguistica is not suitable for – the

publication paper (Creutz and Lagus, 2002) did especially a comparison with Linguistica

on the same data. It was done based on three categories:

1. “correct and complete segmentation (i.e., all relevant morpheme bound-

aries were identified),

2. correct but incomplete segmentation (i.e., not all relevant morpheme

boundaries were identified, but no proposed boundary was incorrect),

3. incorrect segmentation (i.e., some proposed boundary did not corre-

spond to an actual morpheme boundary).” (Creutz and Lagus, 2002)

These categories can be seen as variants of the Accuracy measure. While the experiments

were carried out on a Finnish and an English corpus, unfortunately only the numbers

of Finnish are presented in detail, as shown in Table 4.112. While we can see significant

improvements in Finnish, the authors report that the two systems applied to English

“were rather equal in performance.” Generally, Morfessor “leaves very common word

forms unsplit, and often produces excessive splitting for rare words. [. . . ] Linguistica,

12In the original paper, Morfessor’s search procedure was implemented in two ways, recursive and
sequential. As recursive achieved better results and as it is also the implementation of the published
software, only its values are presented here.
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Morfessor Rali-Ana Rali-Cof
Language Pr. Rc. F Pr. Rc. F Pr. Rc. F
Vow. Arabic 86.87 4.90 9.28 91.30 2.83 5.49 95.09 1.50 2.95
English 74.93 49.81 59.84 64.61 33.48 44.10 68.32 46.45 55.30
German 81.70 22.98 35.87 61.39 15.34 24.55 67.53 34.38 45.57
Finnish 89.41 15.73 26.75 60.06 10.33 17.63 74.76 26.20 38.81
Turkish 89.68 17.78 29.67 69.52 12.85 21.69 48.43 44.54 46.40

Table 4.2.: Morfessor vs. Rali-Ana/Rali-Cof: Collected performance num-
bers of Morfessor and Rali-Ana/Rali-Cof at Morpho Challenge
2009 in Precision, Recall and F-measure. All values in percent.

on the other hand, employs a more conservative splitting strategy, but makes incorrect

segmentations for many common word forms.” (Creutz and Lagus, 2002, page 8-9)

4.7.2. Morfessor vs. Rali-Ana/Rali-Cof

A comparison of the performance of Morfessor and the Rali-Ana/Rali-Cof systems is

presented in (Kurimo et al., 2009, page 11 ff.), its numbers are presented in Table 4.2.

The results were discussed in detail in (Lavallée and Langlais, 2009a).

Starting with a comparison between the two analogical systems, we can see that Rali-

Cof outperforms Rali-Ana in almost all languages. Explaining this is trivial: Rali-

Ana is directly tied to the actual analogies found by the system – because of the high

computational complexity discussed above, only a small subset of the analogies has been

identified which impacts recall. As the authors put it

“Since analogical learning somehow relies on the pattern frequency to identify

morphemes, several valid morphemes might be overlooked due to their low

frequency in the training set. The high precision supports this hypothesis as

it shows that what the systems manage to learn from the lexicon is valid but

that only a few morphological phenomenon could be identified.” (Lavallée

and Langlais, 2009a, page 8).

Overcoming this problem by the generalization based on c-rules is apparently a good

way since the recall is literally jumping up from Rali-Ana to Rali-Cof.

But compared to Morfessor, the analogical systems have a lower precision. This is a bit
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surprising, since the “search procedure” of the analogical systems restricted to found

analogies seems a lot more conservative as Morfessor’s free search among all possibe

splits.

On the other hand, the Recall of Rali-Cof is much higher in three languages and so also

its F-measure compared to Morfessor’s. Seemingly, the analogical approach manages to

find morphs that Morfessor misses because they are not “seeded” – as explained further

in subsection 4.8.2.

4.8. Discussion

4.8.1. Linguistica

The very first question I had when reading about Linguistica was if it uses formal analo-

gies, since the last paper (Goldsmith, 2007) had such a promising title, “Morphological

Analogy: Only a Beginning”. I was quite surprised that it does not and it does not

even have a reference on the work of them, although several works on formalizing formal

analogies like (Yvon et al., 2004) were published before.

In fact, the heuristic-based analogies found by Goldsmith fulfill the formal analogy def-

initions from section 3.2 if we assume a signature with two stems and two suffixes.

Signatures with more stems or affixes can be seen as formal analogies by considering all

possible quadruple instances in the same way. For example, the signature 4.25 can be

considered as the three analogies from 4.26 to 4.28.

{
jump

walk

}
NULL

s

ing

 (4.25)

jump : jumps :: walk : walks (4.26)

jump : jumping :: walk : walking (4.27)

jumps : jumping :: walks : walking (4.28)

However, as we see these captured analogies are restricted to two factors at most. In

my opinion, the system could benefit a lot from replacing its heuristic for finding initial
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splits with methods based on formal analogies, for instance on analogical factorizations.

Additionally, it is probably unnecessary to divide morphemes into stems and affixes and

thus increasing the complexity of the model. Such a division is also not useful even

when applying to only European languages as Linguistica priorly wanted to: Even in

non-agglutinative German, there are many words containing two or more stems, as for

instance Wohnungsschlüssel (apartment key) or alkoholhaltig (alcohol-containing).

It seems that Linguistica’s model structure with dividing morphs into stems and suffixes

is only caused by its suffix-oriented heuristic for finding initial splits. Furthermore, it is

this suffix-orientation that will probably not allow Linguistica to capture morphologically

rich languages as Finnish or (vowelized) Arabic which uses a lot of infixation.

4.8.2. Morfessor

My main reason for taking a look on Morfessor was its popularity, as it is even used

as a benchmark algorithm in every Morpho Challenge competition. Its model has a

convincingly simple structure, imposing as few as possible constraints on the morphology

of the data it is analyzing. Basically, “a morph is just a morph”, without any further

label. To “survive” during the search process, it has to prove to appear well distributed

within the data. One could name this approach as purely distribution-based.

However, the main flaw of Morfessor is its search algorithm. It works sequentially,

analyzing and updating the model always based on only one word at a time. Because of

this, it may miss well distributed morphs, as the example in Figure 4.4 shows.

In the left run, Morfessor fails to find to morphs xyz and xyz, although they appear in

every word. The reason for this is: When splitting aaxyz, Morfessor does only look at

the word itself and the current model. As the initial model only contains the unsplit

input words, the system does not see an advantage in splitting into the morph-xyz at

any point, as it temporarily would always lead to an increase of the description length.

This is different in the right data which contains xyz explicitly. Thus, this morph is also

in the initial model, leading to a split in all -xyz words, and then also in all -zyx words.

One can describe this behavior as if Morfessor needs morphs to be “seeded” in the input

data: in order to start the “chain of discovering morphs”, at least one morph must

appear somewhere in the data as a single word.
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Input: Output: Input: Output:

aaxyz aaxyz aaxyz aa + xyz

bbxyz bbxyz bbxyz bb + xyz

ccxyz ccxyz ccxyz cc + xyz

aazyx aazyx aazyx aa + zyx

bbzyx bbzyx bbzyx bb + zyx

cczyx cczyx cczyx cc + zyx

xyz xyz

Figure 4.4.: Two Morfessor inputs and outputs: One fails in finding xyz and
zyx (left), the other succeeds because xyz is also part of the
input.

Summarizing the two MDL approaches, Linguistica and Morfessor, both use a very

good evaluation and development measure – MDL – but have flaws within the search

procedure. Looking ahead, the opposite is true for Rali-Ana/Rali-Cof.

4.8.3. Rali-Ana/Rali-Cof

Finally, the analogy based systems present an interesting search algorithm. As morpho-

logy is the alternation of strings (e.g., affix morphs) around same string contexts (e.g.

stem morphs), analogy seems the to be the natural way of finding them.

However, it is the part of finding them that is computationally very expensive and thus

very time consuming. This a really huge drawback of the approach.

In order to find analogies for every word in the data anyway, the authors applied a

filtering algorithm that apparently filtered too much:

“It is important to note that because we computed only a small portion of

all the analogies, there are many words that these two systems do not treat

adequately. In particular, the words for which no analogy is identified are

left as is in the final solution, which clearly impacts recall.” (Lavallée and

Langlais, 2009a, page 6)

So the problem of low recall in the Rali-Ana system is apparently not caused directly

by its basic concept. It is maybe solvable, or at least improvable, by applying faster

machines or by improving the filtering process.
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Another question that could be raised is if sparsity of data might be a problem: It could

be possible that even when checking for all possible quadruples for analogies, still many

words are left uncovered. However, the experiments that were carried out with the filter

and segmenter of this thesis showed that in all languages, around 90% of the words could

be analyzed with a pure analogical approach (see Section 6.2.2). This finding contradicts

the assumption of analogical data-sparsity. So applying an exhaustive analogy search

on much more data (using better computers or a better filter algorithm) could probably

lead to a better recall.

Eventually, it is interesting that to cope with the problems of the pure analogical system,

the authors chose generating co-factor rules for abstraction, instead of already used

approaches based on distribution, like MDL. One could use the analogical factors as

morph candidates for an MDL-based evaluation – and thus merge Morfessor and Rali-

Ana together. The authors themselves suggest further research based in this direction:

“Our approach on the pure analogical system was quite simple and could gain

from using some information theory metric such as perplexity to calculate the

probability of the different segmentations.” (Lavallée and Langlais, 2009a,

page 9)

4.9. Summary

Summarizing the two MDL approaches, Morfessor and Linguistica, both use a very

good evaluation and development measure – MDL – but have flaws within the search

procedure. Quite the opposite is true for the analogical systems (Rali-)Ana-Seg and

partially for (Rali-)Ana-Cof.

In this thesis, I want to improve the analogical methods of Lavallée and Langlais (2009a)

by introducing a novel exhaustive filtering and analogical factorization approach. De-

tailling and evaluating this approach will be the topic of the remaining chapters. The

interesting further step of combining formal analogies and MDL, as suggested by Lavallée

and Langlais (2009a) above, will have to remain the subject for future work.
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5. Proposed Segmenter

5.1. Introduction

The approach I will propose and describe in the following is heavily based on (Lavallée

and Langlais, 2009a), and there on the subsystem Ana-Seg. As a key change, I have

constructed a Finite-state transducer calculating not only one but all factorizations of

an analogy with a minimal degree. Additionally, I have created a filtering algorithm

that generates all quadruple candidates from the given word list. We thus will get an

exhaustive recall of all analogies and all factors – thus all morph candidates (based on

formal analogies) – in the input data.

In the current chapter, I will describe this approach in detail. These steps of the new

segmenter will concern us:

1. Pre-Filtering all quadruples extracted from the data if they can form an analogy.

2. Checking if the quadruples are in fact analogies, if yes: outputting all factorizations

with the minimal degree.

3. Using the factors as morph candidates for segmentation, evaluating different ap-

proaches.

5.2. Filtering Quadruples

5.2.1. Motivation

Before generating segmentations from analogies, we first need to find the analogies. In

order to find all analogies in a given word list of n words, we would need to check all

possible quadruples in the list which would mean about
(
n
4

)
checks. For only n = 10, 000
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Input Output
lay (lay, say, lays, says)
say (lay, say, laid, said)
laid . . .
said
says
lays
foo
bar
. . .

Figure 5.1.: Input and Output of quadruple filter.

we thus would need to test 416,416,712,497,500 (i.e., around 416 trillion quadruples)

which would not be computationally feasible.

In order to narrow down the input space of the actual analogy checker, I will present

a filtering algorithm that exploits properties of formal analogies, mainly the character

count property (Section 3.3.2). This will bring down the complexity to
(
n
2

)
, leading to

around 50 million steps for n = 10, 000.

Using these properties, the filtering algorithm is similar to the one used by (Lavallée and

Langlais, 2009a), described in (Langlais and Yvon, 2008). The main differences will be

pointed out in the Summary section of this chapter – looking ahead, its main distinction

is that it generates all candidates available, and not only a subset.

To sum up, the module explained in the following will take a list of words as input and

output quadruples that probably form an analogy, as depicted in Figure 5.1.

5.2.2. Recalling the Character count property

As stated, the filter relies mainly on the character count property of formal analogies,

as presented in Subsection 3.3.2. Let us recall it:

∀c ∈ Σ : |x|c + |t|c = |y|c + |z|c (5.1)

The property says that in an analogy, the count of every character within the words

must fulfill the above equation. Given the example [say : said :: lay : laid], for instance
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the count of y in say and laid must be equal to the one in said and lay – and in fact it

is 1 on both sides. The property even applies for non-existent characters like m in this

analogy: In this case, the count is 0 on both sides.

5.2.3. Character count property as Analogy predictor

To make use of the property, we represent all words in the data as vectors of character

counts: For every character, we note its count within the word.

lay : [a : 1, l : 1, y : 1] (5.2)

say : [a : 1, s : 1, y : 1] (5.3)

laid : [a : 1, d : 1, i : 1, l : 1] (5.4)

said : [a : 1, d : 1, i : 1, s : 1] (5.5)

Now we create pairs of all words and their vectors by adding the vectors:

(lay, say) : [a : 2, l : 1, s : 1, y : 2] (5.6)

(lay, laid) : [a : 2, d : 1, i : 1, l : 2, y : 1] (5.7)

(lay, said) : [a : 2, d : 1, i : 1, l : 1, s : 1, y : 1] (5.8)

(say, laid) : [a : 2, d : 1, i : 1, l : 1, s : 1, y : 1] (5.9)

(say, said) : [a : 2, d : 1, i : 1, s : 2, y : 1] (5.10)

(laid, said) : [a : 2, d : 1, i : 2, l : 1, s : 1] (5.11)

We may note now that there are only two equal vectors within all pairs: The vector of

(lay, said) and the one of (say, laid). Each of the two vectors can be seen as one side of

the character count property equation. As it happens, these four words form an analogy.

We should although not forget that the character count property is just a necessary but

not sufficient condition, since it does not take the order of the characters into account.

We may imagine a word like ayl, forming a character count vector with said that would

also look exactly the same like the above vector for (say, laid). However, the quadruple

(ayl, said, say, laid) does not form an analogy.

Nevertheless, a passed character count filter is apparently a strong predictor for a quadru-

ple being an analogy. As can be seen in detail in section 6.2.1, roughly 25% to 50% of the
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quadruples in both English and German fulfilling this condition also form an analogy.

5.2.4. Creating and grouping character count vector pairs

Based on this insight, we want to group all pairs according to their vectors: Pairs with

the same vector will be summarized in the same group.

[a : 2, d : 1, i : 1, l : 1, s : 1, y : 1] : (lay, said), (say, laid) (5.12)

[a : 2, d : 1, i : 1, l : 2, y : 1] : (lay, laid) (5.13)

[a : 2, l : 1, s : 2, y : 2] : (lay, says), (say, lays) (5.14)

We then need to check for analogies only within a group – and every pair of pairs only

once, with no matter what order, since the equivalences explained in Section 3.3.1 apply.

We will note that the vast majority of groups contains only one pair, thus no further

check will be required there, since an analogy needs 4 words, i.e., 2 pairs. In the groups

created with the evaluation datasets of this thesis, around 87-90% of the vector pair

groups contain only one pair.

So the creation of pairs remains the computationally crucial point. Since we need to

create all possible pairs, we come up to a complexity of
(
n
2

)
≈ n2

2
steps, with n being the

number of words in the data.

5.2.5. Additional filtering with boundary character property

After having found candidates via the just described method, we additionally test if

the candidates fulfill the boundary character property, as described in 3.3.3. From the

already generated candidate quadruples, this test deletes on average 40-50% quadruples.
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Input Output
(lay, say, lays, says) → [(lay, say)(ε, s);

(la, sa)(y, ys);
(l, s)(ay, ays)]

(lay, say, laid, said) → [(la, sa)(y, id);
(l, s)(ay, aid)]

(ayl, say, laid, said) → ∅
. . . . . .

Figure 5.2.: Input and Output of FSM analogy factorizer.

5.3. FSM for finding and factorizing formal

analogies

5.3.1. Introduction

The next step is the heart of the system: given the just before calculated quadruples

as input, we want to calculate all factorizations of the minimal degree, as depicted in

Figure 5.2. This will be done by a weighted finite-state machine (FSM), being more

specific, by a transducer, constructed using on the work of (Yvon et al., 2004). Such

a transducer may be implemented in any FSM framework, always producing the same

results.

This FSM will be based on a novel representation of formal analogies, which might be

also called encoding. It will allow us to represent analogical quadruples in a short form

and might be also useful in another applications concerning formal analogies.

5.3.2. Idea

Recalling the analogy definition

The idea shall be described using the example of the input quadruple (lays, laid, says, said).

In order to check if this quadruple forms an analogy, we may recall Section 3.2: “It must

be possible to factorize every of the four given words in a way that every factor quadru-

ple is of the form (a, a, b, b) or (a, b, a, b).” Such factorizations with the minimal number

of factors for the given example can be seen in Figure 5.3.
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Words Patterns Min. Factorizations Min. Atomic Factorization
lays a a a la ys l ays l a y s
laid b a a la id l aid l a i d
says a b a sa ys s ays s a y s
said b b a sa id s aid s a i d

pattern type: 1 2 4 2 1 2 1 2 4 1 1

Figure 5.3.: Factorizations for lays : laid :: says : said.

Pattern types

We may require the factors to contain only single characters (with allowing the empty

character ε). Such atomic factor quadruples must be still of the form (a, a, b, b) or

(a, b, a, b). We call these forms patterns and give them a number according to the

number of a counting from the start:

• 1 for (a, b, a, b),

• 2 for (a, a, b, b) and

• 4 for (a, a, a, a).

The last pattern is a special case of the two previous ones and can be called a “subset” of

them, since factors of pattern 4 match also pattern 1 and 2. In Figure 5.3, an example

of such a pattern is the middle-a of the four words. It is these factors that cause

different minimal factorizations – since, as seen here, we may attach this atomic factor

to the previous type-2-pattern or the following type-1-pattern. Thus, the existence of

ambiguous minimal factorizations is directly related to the existence of type-4 patterns.

At this point, we can also see another way of calculating the degree: It is the minimum

number of times where we need to switch from one pattern type to another plus 1 – and

pattern type 4 appearing as type 1 or 2.

In our example, we need to start with 2, can then take the 4 still as 2 but must then

switch to 1, hence one switch. Another option is to start again with 2, take the 4 as 1,

i.e., make the switch already here and continue with 1. Again, we made only one switch,

adding 1 makes a degree of 2. Again, we can see that if there are no type-4 patterns, no

ambiguity can occur.
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(a, b, a, b) = 1ab lays : laid :: says : said =
(a, a, b, b) = 2ab (l, l, s, s)(a, a, a, a)(y, i, y, i)(s, d, s, d) =
(a, a, a, a) = 4aa 2ls4aa1yi1sd

Figure 5.4.: Analogy encoding, definition (left) and example (right).

Encoding analogies

Based on the definition of pattern types, we may define an encoding for analogies. We

may have noted that although we are dealing with four words and thus with quad-ruples

of characters, there are always at most two different characters per quadruple at play

(assuming the four words form an analogy). Hence, we may encode analogy quadruples

according to the mapping in Figure 5.4.

4-way alignment

The given example of lays : laid :: says said is kind of trivial, as the four words have

the same length and fulfill the required patterns on their “natural” alignment by just

writing them one below the other. This is different with lay : laid :: say : said for

instance, where we first need to find the right alignment.

This alignment must not be confused with the popular alignment based on edit-distance

(Levenshtein, 1966). We can draw the difference based on the example in Figure 5.5.

An edit-distance alignment is usually an alignment between two words. The aligned

tuples of characters may be of the form (a, a) for same characters, (−, a) for insertions,

(a,−) for deletions and (a, b) for substitutions. All tuples except the first usually have

Alignments Edit-distance Analogical
w o r d x - - - -

- w o r d x - - - - x w o r d
x w o r d - w o r d y - - - -

- - - - y w o r d
pattern type: 1 1 1 1 2 1 1 1 1

Figure 5.5.: (2-way) shortest alignment based on edit-distance (left), 4-way
shortest alignment based on analogical patterns (right).
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a cost assigned. The shortest alignment is thus the alignment with the smallest cost.

In contrast, an analogical alignment is a 4-way alignment, allowing quadruples of the

above described patterns. Hence, there may also be no analogical alignment – if the four

words do not form an analogy.

We will use a finite-state machine to check if such an analogical alignment exists and, if

there are more than one, to calculate the shortest alignment.

5.3.3. FSM Definition

Previous work

As stated, the Weighted FSM we want to construct, will be based on (Yvon et al.,

2004). In contrast to our task, this paper concerns the solution of analogical equations,

i.e., given for instance lays : laid :: says : X, calculating the solution X = said. But

since such a task also involves finding the optimal solution, thus the solution with the

lowest number of factors, we may use many of their “ingredients” for our FSM. One of

them is the way of calculating the 4-way alignment of four words in (Yvon et al., 2004,

page 14 ff.).

Notational preliminaries

In the following description, the same concepts of finite-state machines will be used as

in the previous work. Basically, acceptors represent languages (i.e., sets of words) and
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transducers represent relations of languages. The following notations apply:

{a, b} : an acceptor representing the language with the words a and b

A, {· · · } : capital letters or curly brackets denote acceptors

A×B : a crossproduct of two acceptors A and B forms a transducer,

mapping from A to B

A ∪B : union of the acceptors A and B

A ∩B : intersection of the acceptors A and B

A ◦B : composition of transducers or acceptors A and B

A∗ : star closure of the acceptor A

{· · · }〈w〉 : an acceptor weighted with weight w

Bestpath(A) : a function returning the path with the minimal weight

P2(A) : a function extracting the output language of a transducer

Overview

We assume to be given the four input words as simple finite-state acceptors. We want

to construct a FSM that

1. prepares the input acceptors,

2. intersects the prepared acceptors, thus creates an acceptor representing all analog-

ical alignments,

3. filters out unnecessary paths of the intersected acceptor leaving a path representing

the unique minimal factorization based on the presented encoding above, and

finally

4. generates an acceptor containing all minimal factorizations.

Preparing input words

We want to format the input acceptors in a way that they just need to be intersected

and the resulting acceptor then contains all analogies as its paths. We need two things

to consider.
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10 32 4
y

− −

sa

−

l

− −

Figure 5.6.: FSM accepting lays with an arbitrary number of spaces at any
point of the word.

The first concerns the alignment in general: If two or more words shall be aligned, and

especially if they are of different length, we must be able to insert spaces, otherwise

an alignment can be impossible. So we will use − as the symbol representing a space

and allow an infinite number of spaces to be inserted at any point of the words. The

resulting automaton for the word lays is depicted in Figure 5.6.

Secondly, we want the alignment to be analogical – where every quadruple has the form

of an analogical pattern. We can make this sure by trying to encode the words as an

analogy, as it has been defined in subsubsection 5.3.2. If it succeeds, the given four

words must be an analogy.

By looking at the encoding definition again, we note that, for instance, characters of

the first word lays only appear as the left character in the encoded version. This is

similar with the characters of last word said, only appearing as the right character in

the encoding.

In Figure 5.7, we see an overview of possible encodings of a character. Hence, we

will substitute every transition of the acceptor in Figure 5.6 with their corresponding

acceptors from Figure 5.7. We define Σ as the set containing Σ and −.
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x : 1x* y : 1*y z : 1z* t : 1*t

2x* 2y* 2*z 2*t

1 32 4Σ1

2

x

1

32

54

6

y

y Σ

Σ

2

1

1

32

54

6

Σ

Σ
z

z

2

1

1 32 4
t1

2

Σ

Figure 5.7.: Possible encodings of a character given the analogy X : Y ::
Z : T with x, y, z, t as corresponding characters (* indicating
any character plus space) – and their corresponding acceptors
(Σ indicating any character plus space).

Finally, we come up with the following operations for preparing the input words:

α− = {ε} × {−} (5.15)

α1 = {ε} × {1} (5.16)

α2 = {ε} × {2} (5.17)

αΣ = {ε} × Σ (5.18)

Xprepared = P2

(
X ◦ (Σ ∪ α−)∗ ◦

(
(α1 ∪ α2) · Σ · αΣ

)∗)
(5.19)

Yprepared = P2

(
Y ◦ (Σ ∪ α−)∗ ◦

((
α1 · αΣ · Σ

)
∪
(
α2 · Σ · αΣ

))∗)
(5.20)

Zprepared = P2

(
Z ◦ (Σ ∪ α−)∗ ◦

((
α1 · Σ · αΣ

)
∪
(
α2 · αΣ · Σ

))∗)
(5.21)

Tprepared = P2

(
T ◦ (Σ ∪ α−)∗ ◦

(
(α1 ∪ α2) · αΣ · Σ

)∗)
(5.22)
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3
54

6
98

aa

2 a a
1

3 54 6
aa4

Figure 5.8.: Sequence of intersected acceptor before and after merging factors
with ambiguous pattern type.

Intersecting and filtering

Given the four prepared input word acceptors, we just need to intersect them:

A = Xprepared ∩ Yprepared ∩ Zprepared ∩ Tprepared (5.23)

We thus obtain an automaton A

• containing all analogical alignments of the four words

• or being empty if the words do not form an analogy. In this case, the work is done

at this point.

In the first case, we now need to filter all these alignments to get the best one, that is, the

one with the lowest number of factorizations. Solving this task is quite straightforward:

We simply put a weight on every factor, that is: on every occurrence of the markers 1

and 2 – and then search for the path with the lowest weight. Thus, the shortest path

will win. This means that non-minimal alignments, as shown for example Figure in 5.9

will be filtered out, making the automaton remarkably smaller and so speeding up the

following steps.

However, there may be more than one path with the same minimal weight. In this case,

we want all of these alignments, thus, all of the minimal factorizations.

The following part of the algorithm may be omitted if we assume to have a Bestpaths(A)

function in our FSM framework, leaving all all paths in the acceptor a with a minimum

weight. Even the introduction of pattern type 4 could be left out, we would just calculate

switches between 1 and 2. However, this function is not available in the framework I am

using (Hanneforth, 2009), nor in the popular OpenFST (Allauzen et al., 2007).

We therefore apply a transducer preserving all factors that are marked with both 1 and

2 and mark them as 4, according to our definition for encoding analogies in subsubsec-
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- l a y s
- l a i d
s - a y s
s - a i d

pattern type: 2 2 1/2 1 1

Figure 5.9.: Non-minimal analogical alignment in A, filtered out in Afiltered.

10 32 54 76 98
as y2a il1 4

Figure 5.10.: Beginning sequence of filtered acceptor Afiltered for lays : laid
:: says : said, containing the single shortest path.

tion 5.3.2 As we remember, it is these ambiguous factors that create multiple minimal

factorizations. By merging into one factor we “disambiguate” them. See Figure 5.8 for

an acceptor sequence before and after applying this transducer.

Note that factors marked with 4 do not have a weight attached (in contrast to factors

marked with 1 or 2), thus they will always be the shorter to paths that use 1 or 2 for

the very same position.

So finally, we come up with these operations and obtain an acceptor containing one path

representing all minimal factorizations of lays : laid :: says : said depicted in Figure

5.10:

β4 =
⋃
a∈Σ

({1, 2} × {4}) · a · a (5.24)

βcount = {1, 2}〈1〉 (5.25)

Afiltered = Bestpath
(
P2

(
A ◦

(
β4 ∪ βcount ∪ Σ

)∗))
(5.26)

Generating all minimal factorizations

The current one-path acceptor already represents all minimal factorizations but it is

using the pattern type 4. Thus, the current factorization contains sequences of this

pattern as a factor of its own: In our running example, the middle a would be such a

factor of its own, leading to a factorization (l, s)(a, a)(ys, id).
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As factors of type 4 are only “subsets” of type-1 and type-2 factors, the straightforward

solution might be in just replacing all 4’s with 1 and 2. However, this would lead to an

overgeneration. To clarify this, let us look at the fictional example of laays : laaid ::

saays : saaid. In encoded form, this analogy looks like:

2ls 4aa 4aa 1yi 1sd

Converting all 4’s to 1 and 2 would generate the following factorizations:

1) 2ls 1aa 1aa 1yi 1sd

2) 2ls 1aa 2aa 1yi 1sd

3) 2ls 2aa 1aa 1yi 1sd

4) 2ls 2aa 2aa 1yi 1sd

While the factorizations 1), 3) and 4) do a pattern-type switch only once, the factor-

ization 2) switches three times and counts every a as a factor of its own. Hence, 2) has

more pattern type switches as other factorizations and is not minimal anymore.

Therefore, we need a way to convert back the 4’s without introducing non-minimal

factorizations. We have to deal with three cases:

Current sequence Desired sequence

1. 4 enclosed by 1 / by 2 ...1441... → ...1111...

...2442... → ...2222...

2. 4 between 1 and 2 / between 2 and 1 ...1442... → ...1112...

...1122...

...1222...

...2441... → ...2111...

...2211...

...2221...

3. 4 at the beginning / at the end 41... → 11...

42... → 22...

...14 → ...11

...24 → ...22
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These conversions are done with the following transducers applied sequentially toAfiltered:

γ1 = {1} · Σ · Σ (5.27)

γ2 = {2} · Σ · Σ (5.28)

γ4×1 = ({4} × {1}) · Σ · Σ (5.29)

γ4×2 = ({4} × {2}) · Σ · Σ (5.30)

γenclosed1 = (γ1 · (γ∗4×1 · γ1)∗ ∪ {1, 2, 4} ∪ Σ)∗ (5.31)

γenclosed2 = (γ2 · (γ∗4×2 · γ2)∗ ∪ {1, 2, 4} ∪ Σ)∗ (5.32)

γbetween12 = (γ1 · γ∗4×1γ
∗
4×2 · γ2 ∪ {1, 2, 4} ∪ Σ)∗ (5.33)

γbetween21 = (γ2 · γ∗4×2γ
∗
4×1 · γ1 ∪ {1, 2, 4} ∪ Σ)∗ (5.34)

γbeginning = (γ∗4×1 · γ1 ∪ γ∗4×2 · γ2 ∪ {1, 2, 4} ∪ Σ)∗ (5.35)

γend = (γ1 · γ∗4×1 ∪ γ2γ
∗
4×2 · ∪{1, 2, 4} ∪ Σ)∗ (5.36)

Afactorizations = P2(Afiltered ◦ γenclosed1 ◦ γenclosed2 ◦ γbetween12 ◦ γbetween21 ◦ γbeginning ◦ γend)
(5.37)

With these auxilliary transducers, we have created a straightforward and easy imple-

mentable way for bypassing the often missing Bestpaths() function.

And here we are done. Afactorizations now contains all minimal factorizations of the given

analogy – and nothing more.

Summary

The described finite-state machine is summarized in the following. As already stated,

the input words represented as acceptors X, Y, Z, T and the final acceptor containing all
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factorizations (or being empty in case of no analogy) is Afactorizations.

Xprepared = P2

(
X ◦ (Σ ∪ α−)∗ ◦

(
(α1 ∪ α2) · Σ · αΣ

)∗)
(5.38)

Yprepared = P2

(
Y ◦ (Σ ∪ α−)∗ ◦

((
α1 · αΣ · Σ

)
∪
(
α2 · Σ · αΣ

))∗)
(5.39)

Zprepared = P2

(
Z ◦ (Σ ∪ α−)∗ ◦

((
α1 · Σ · αΣ

)
∪
(
α2 · αΣ · Σ

))∗)
(5.40)

Tprepared = P2

(
T ◦ (Σ ∪ α−)∗ ◦

(
(α1 ∪ α2) · αΣ · Σ

)∗)
(5.41)

Afactorizations = P2(Bestpath((Xprepared ∩ Yprepared ∩ Zprepared ∩ Tprepared)◦ (5.42)(
β4 ∪ {1, 2} ∪ Σ

)∗ ◦ (βcount ∪ {4} ∪ Σ
)∗

)◦ (5.43)

γenclosed1 ◦ γenclosed2 ◦ γbetween12 ◦ γbetween21 ◦ γbeginning ◦ γend) (5.44)

We may note that Afactorizations does not contain any brackets or morpheme borders yet.

However, these can be obtained easily be just reading sequentially the encoded analogies

and inserting a split after every change of 1 to 2 and back. We leave that to the following

step producing the actual segmentations of the words.

5.4. Segmenting words using analogical

factorizations

Given the exhaustive analogical factorizations of the previously described FSM, the

next step generates segmentations for the words involved in the analogies, as depicted

in Figure 5.11.

The work is done in two modes: For every analogy found

Input Output
[(lay, say)(ε, s); → lay = lay
(la, sa)(y, ys); lays = lay + s
(l, s)(ay, ays)] say = say
[(lay, hit)(ε, s)] says = say + s
[(say, hit)(ε, s)] hit = hit

hits = hit + s

Figure 5.11.: Input and output of the segmenter.
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1. all factorizations are picked. This represents the new approach presented here

2. only one factorization is picked randomly. This is the approach of (Lavallée and

Langlais, 2009a), and is also done by this segmenter in order to compare the two

approaches.

The following part of the algorithm is the same as Ana-Seg in (Lavallée and Langlais,

2009a): For all picked factorizations of an analogy, the words involved are segmented

according to their picked factorizations, and the four segmented words of an analogy

become candidates for the final segmentations.

For every word, a global list of all its segmentation candidates is collected. Finally, after

having processed all analogies, for every word the most frequent segmentation is taken

as its final segmentation.1

For instance, given the two factorizations [(la, sa)(ys, id); (l, s)(ays, aid)], every word

involved gets two segmentation candidates:

lays = (la+ ys, l + ays) (5.45)

says = (sa+ ys, s+ ays) (5.46)

laid = (la+ id, l + aid) (5.47)

said = (sa+ id, s+ aid) (5.48)

Now lays has globally two candidates with the frequency 1: la+ ys and l + ays. Other

factorizations may increase the frequency of one of theses candidate or add new candi-

dates. As stated, in the end the most frequent candidate will be the final segmentation

of lays.

5.5. Summary

The presented segmenter is composed by three modules: a filter, a factorizer and a

segmenter. The first and the latter steps were written as a Python script2, the FSM

factorizer was implemented in the FSM2 toolkit (Hanneforth, 2009).

1If there is more than one most frequent segmentation, one is picked randomly as done by (Lavallée
and Langlais, 2009a), stated by Philippe Langlais in a personal e-mail conversation.

2http://www.python.org/
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While the segmenter is a simple adaption of the algorithm of (Lavallée and Langlais,

2009a), the first two modules contain important differences compared to previous ap-

proaches.

5.5.1. Filter

To cope with the huge search space when searching for analogies in a non-toy word list,

Lavallée and Langlais (2009a) use an algorithm presented in (Langlais and Yvon, 2008).

As this algorithm is looking for triples given one input word, the words in the input list

are processed sequentially. For every word, a time limit is set, thus not for all words

analogies are found.

This is different in the filter presented here: It processes the whole word list at once

and gives an exhaustive list of all possible analogies. As in (Lavallée and Langlais,

2009a), the filter makes use of the character count property (called there T-Trick) and

the boundary character property (called there S-Trick).

However, the computational complexity of the current approach is still not low, as it is

quadratic in relation to the input list size. Therefore, the input need to be limited, as

will be pointed out in the Evaluation chapter 6.

5.5.2. Factorizer

To my knowledge, there did not exist a description of an analogical factorizer yet in

the literature. Also (Lavallée and Langlais, 2009a) misses a hint or reference to the

factorization technique they applied.

The factorization algorithm applied here is based on the analogical solver presented in

(Yvon et al., 2004, page 12 ff.). Again, this algorithm was not a direct solution for the

given task and had to be adapted. Its actual purpose is solving analogical equations, as

already explained in Section 3.1.3.

The basic construction of the current factorizer is similar to the existing solver: Both

are based on finite-state machines and try to create a n-way alignment of the input

words by preparation and intersection. However, in (Yvon et al., 2004), this alignment

is not yet restricted, allowing priorly all possible alignments, which may lead to a huge
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automaton. Only the next step, called the “atomic solver”, applies analogical pattern

to the aligned tuples and filters out non-analogical alignments.

In contrast, the factorizer presented here restricts the alignments to analogical ones.

Thus, after intersection, no further atomic solver is required to check for an analogy.

Additionally, the intersected automaton is probably much smaller, as it contains only

analogical alignments.

Moreover, it does not output only one word (as the analogical solver), but all words of the

processed analogy in a new way of encoding analogies. This by-product, a space-saving

formalism for encoding analogies, might be also useful in other analogical applications,

as explained in Conclusion chapter 7.
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6. Evaluation

6.1. Used datasets

6.1.1. Sources

The segmenter proposed in the previous chapter was then implemented and evaluated,

focussing on the aspect of finding all factorizations of an analogy. For choosing the

dataset, the following restrictions applied:

• The evaluation should be comparable to the one in (Lavallée and Langlais, 2009a),

as it was this approach that has been developed further here.

• Since the filter and factorizer have a quadratic complexity regarding to the size

of the input word list and the computational resources and time were limited, the

input data had to be limited. Thus, a reasonable way for choosing an excerpt of

the data had to be found.

(Lavallée and Langlais, 2009a) developed their method for Morpho Challenge 2009.

Its “Competition 1” offers a large dataset of words in 5 different languages – English,

German, Finnish, Turkish and Arabic, together with their frequencies, still downloadable

online1. However, the Gold standard available online is very small, as it contains only

400-700 words per language.

Therefore, to obtain a much more significant evaluation, Lavallée and Langlais (2009a)

used also data from Celex (Baayen et al., 1993), offering around 70,000 morphologically

annotated word forms in English and more than 300,000 in German2. As Lavallée and

Langlais (2009a, page 7) did already an extraction of morpheme analyses from the Celex

1http://research.ics.tkk.fi/events/morphochallenge2009/datasets.shtml
2Celex contains also Data in Dutch, which however was omitted as Dutch was not part of the

Morpho Challenge 2009 competition.
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dataset: Celex Celex additional Morpho Challenge (MC)
segmenter top 1000 freq. ranks 5000-10000 top 10000 +

input words : top 2000 freq. ranks 10000-15000 words from gold standard
top 5000 freq. ranks 15000-20000 (400-700 per language)
top 10000 ≈ 10400 to 10700 words

evaluation words : all input all input only gold standard
languages: eng, ger eng, ger eng, ger, fin, tur, vowara

Figure 6.1.: Datasets used for evaluation. Thus, “Celex” contained 4 different
word lists for each of its languages, “Celex additional” 3 and
“MC” 1.

data, I asked and was given access to their dataset. This dataset however did not contain

word frequencies.

So by using the same data sources, the evaluation could be comparable. However, due to

the complexity and calculation time, the data still had to be limited, as will be described

in the following section.

6.1.2. Compilation

The most straightforward way for limiting the data was ranking the words by frequency

and then picking the topmost n words. By this, we probably would also come close to a

“real world” situation where for the analysis of a not well explored language, only some

data would be available and we may assume that such data usually would consist of

high-frequent words of this language.

Since the Morpho Challenge training data (MC) contained frequencies, ranking the words

was easy there. This was not the case for Celex, so in order to rank its words, the Celex

word list was intersected with the MC list and then ranked according to the frequencies

from MC.

Finally, the following word lists were compiled and used, an overview is also depicted in

Figure 6.1.

• Celex with the languages English (eng) and German (ger), using the most-frequent

1000, 2000, 5000 and 10000 words.3

3The limit of 10000 was chosen since a run with that many words takes around 11 hours for one
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• MC with the languages English (eng), German (ger), Finnish (fin), Turkish (tur)

and Vowelized Arabic (vowara) using the most-frequent 10000 words. As men-

tioned, MC data was not labeled, only an additional gold standard with 400-700

contained labels. Most of the words in the gold standard were not part of the

most frequent words, so in order to be able to measure the performance of the

segmenter, the gold standard words were added to the MC data.4

• In order to measure any bias caused by the selection by frequency, a third Celex

additional dataset was created, containing chunks of each 5000 words of lower

ranks, e.g., words from frequency rank 5000 to 10000, from rank 10000 to 15000,

and so on. The limit 5000 was picked as it seemed to be a good trade-off between

computation time and segmenter performance.

6.1.3. Processing

In every dataset, all characters that were not Latin letters, numbers or part of {.−′},
were replaced by a ∼. This affected mainly Finnish, as the original data contained

Germanic umlauts which were now converted to hyphens. For German this was not an

issue as the data both from Celex and MC contained already transcribed umlauts.

While this might have corrupted some results in Finnish, note that the effect can be

only on precision not recall since the applied preprocessing mapped characters from a

larger set to a smaller. Thus, for instance the following analogy can be still found when

replacing the ä with ∼:

pyydettiin : pyydetty :: nähtiin : nähty (6.1)

pyydettiin : pyydetty :: n ∼ htiin : n ∼ hty (6.2)

language on the computer I had access to – which I considered a reasonable time for applying and
possible refining the system. Remeber that this time grows quadrically in relation to the input size.

4It may be confusing to use gold standard data for creating a system and evaluating it at the same
time. However, note that only the words from the gold standard were used, not their morphological an-
alyzes. Remember also, because of its structure, the system can be run only once on a “training=test”
dataset already producing analyzes, not a model. A later query with an unseen word is not possible.
Therefore, we do not have the typical distinction between training and test data like in other unsu-
pervised systems. These usually first create a model using training data which then can be applied on
(unseen) test data.
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Figure 6.2.: Rates of analogy candidates and analogies in relation to possible
quadruples. Based on Celex dataset.

6.2. Experiments on analogies

6.2.1. Filter performance

The raw numbers of all experiments are presented in the Appendix chapter A.

The first step of the segmenter pipeline is the filter which generates candidate quadruples

that might be an analogy. Its results, depicted in Figure 6.2, show the rate of generated

candidate quadruples and actual analogies in relation to possible quadruples. Two things

can be seen:

• The filter saves us a lot of analogy checks. From all possible quadruples, i.e.,
(
n
4

)
,

on average only 0, 00001% need to be checked with the FSM factorizer.

• Roughly half to one fourth of analogy candidates turn out to be analogies, declining

with growing input size.

• The rate of candidates and analogies in relation to possible quadruples is falling

rapidly. As the number of analogies is growing with more input, the pure number

of analogies is still growing with more input but not as fast as the number of

possible quadruples.
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Figure 6.3.: Rate of words covered by at least one analogy, in Celex dataset
(left) and MC (right).

6.2.2. Analogy coverage

In following, we examine how many of the input words were found as parts of an analogy,

i.e., were “covered by an analogy”, since only these words had a chance to be analyzed

by the proposed segmenter. The results are portrayed in Figure 6.3.

We note that with more input, the rate of covered words is growing, reaching a very

high level of more than 95%. This is interesting, since (Lavallée and Langlais, 2009a,

page 6) observed “many words that these two systems do not treat adequately” because

many analogies were not found.

These on first sight contradicting findings could be explained, if the coverage would be

that high only among high frequent words and would drop again when taking more non-

frequent words into account. An experiment carried out on the Celex additional dataset

using only lower frequent words seems to confirm this, as seen in Figure 6.4. However,

we still don’t know how the coverage looks for high- and low-frequent words together.

Our current assumption is probably misleading: there is a drop in coverage between

1-5000 and 5000-10000 (6.4) but a raise between top-5000 and top-10000 (Figure 6.3).

So maybe the assumption of analogical data-sparsity (i.e., that within lists of low-

frequent words, the words are too “special” or rare to find other words which could
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Figure 6.4.: Rate of words covered by at least one analogy, The x values
denote word frequency ranks in thousands.

form an analogy with them) is not true: Maybe we can cover nearly all words with more

input. We just need an exhaustive analogy finder (and some patience when using only

contemporary computers).

Looking at the MC data in Figure 6.3, we can see a similar high coverage in other

languages, only Arabic falls off a bit, possibly due to its very complex infix inflection,

causing sparsity.

6.2.3. Different factorizations

In the next section, we shall check the segmenter performance. We will compare con-

sidering all factorizations of an analogy vs. considering only one. Before we do this,

it would be good to know how many analogies actually have more than one factoriza-

tion. Only on these analogies the new approach can have an impact. The numbers are

depicted in Figure 6.5.

Firstly, there is no noteworthy change by scaling the input. But secondly, there are big

differences among the languages. While in English only slightly more than 10% of the

analogies have more than one factorization, the rate in German is nearly 30%.

A reason for this could be tied character sequences (like “sch”), that occur probably more

often in German than in English. If then all four words of an analogy contain the same
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Figure 6.5.: Rate of Analogies with more than one factorization among all
analogies, in Celex dataset (left) and MC (right). The right
diagramm for MC also contains summed frequencies for the top-
10 character bigrams in each language.

sequence, multiple factorizations are generated. For instance, the analogy politischen :

politisch :: deutschen : deutsch has four minimal factorizations:

(politi, deut)(schen, sch)

(politis, deuts)(chen, ch)

(politisc, deutsc)(hen, h)

(politisch, deutschen)(en, ε)

all caused by the common tied character sequence “sch” which is frequent in German

adjective endings.

To confirm this assumption, we take a look on character bigrams. To measure the

proportion of common bigrams in a language, the sum of the frequencies of the top-10

character bigrams for every MC language in the used dataset was calculated. The higher

this number, the more common tied char sequences and thus more analogies with more

than one factorization are expected.

For every MC language, these sums were plotted alongside the rate of analogies with
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more than one factorization. As we see in Figure 6.5, both numbers seem to correlate

more or less.

So if the new system with considering all factorization has any effect, it is expected to

be rather in German or Arabic than in English. However, in every language the vast

majority of analogies – more than 2
3

– contains only one factorization, thus the new

system will have no effect there.

6.3. Experiments on segmentation

6.3.1. Scaling and Languages

In the next experiments, we compare the performance of the actual morpheme segmenter,

the main task of this thesis. As a start, we checked how the performance differs between

• considering all factorizations (my approach),

• considering one factorization (Ana-Seg by (Lavallée and Langlais, 2009a)) and

• Morfessor (as a general benchmark).

To begin with, I used the Celex dataset with English and German to see how the numbers

change with more input. Both diagrams are depicted in Figure 6.6.

First of all, the results of Ana-Seg (one factorization) are coherent with the ones re-

ported in (Lavallée and Langlais, 2009a, page 8), thus the present implementation can

be considered as faithful.

The key result is quite disappointing: There is barely a noticeable difference between

considering all factorizations (i.e., the main improvement of the proposed segmenter)

and only one factorization, as already done by (Lavallée and Langlais, 2009a). In nearly

all measured categories, the performance is only slightly better, not more than one

percentage point.

We see the same (non-)effect on the other languages, as depicted in the last row of Figure

6.6: No big difference between considering all and one factorization.

The reason for this is probably in general the low rate of analogies with more than one

factorization – as noticed in the previous section, it is only 20% on average. But it is
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Figure 6.6.: Performance of the segmenter on Celex English and German (first
two rows) and MC (last row). Every x-point shows three bars:
Analogical segmenter using all minimal factorizations (approach
presented in this thesis), one factorization (Lavallée and Langlais,
2009a), Morfessor
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still surprising, that even in German having nearly 30% analogies with more than one

factorization, no impact can be seen.

Compared to Morfessor, the two analogical systems underachieve in nearly all measured

categories, but especially in recall. It is also interesting that more even data does not

improve it – in contrast to precision. This might be due to the effect that an analogy

usually captures only one morphological change at a time and a generalization is missing,

causing a problem for multi-morphemic words. For instance, the word underachieves

may appear in the two analogies, generating these segmentation candidates:

underachieves : underachieve :: says : say → underachieve+ s (6.3)

underachieves : achieves :: undertake : take→ under + achieves (6.4)

As we see, both morphemes are captured – but by different analogies, and the generated

segmentation candidates are not merged together. Thus, probably only one candidate

will win – instead of the correct merged candidate under + achieve+ s.

This is a main drawback of the analogical approach that (Lavallée and Langlais, 2009a)

tried to fix with c-rules, implemented in the more sophisticated Ana-Cof system. Another

way of coping with this drawback might be using informational measures like MDL, as

already indicated. We will come back to this in Conclusion chapter 7.

6.3.2. Frequent and less frequent words

Finally, as the data had to be limited for computational reasons, I wanted to check if

the choice of high frequent words makes a difference. Therefore, in comparison to the

already calculated top-5000-words chunk of Celex, the following 5000-words chunks were

given to the segmenter. If the results would remain similar, one could maybe divide all

the data into such chunks and receive results for all of the data, avoiding the problem

of computational complexity. Unfortunately this is not the case, as depicted in Figure

6.7.

As we can see, the numbers are falling slightly in all categories. This is a bit surprising

on first sight, as one could assume that less frequent words are more morphologically

regular, thus more (morphological) analogies should be found. However, most certainly

the reason for this is the lower analogy coverage, as shown in subsection 6.2.2. As
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Figure 6.7.: Performance of the segmenter on Celex English and German us-
ing words of different frequency ranks. The x values denote word
frequency ranks in thousands. Every x-point shows three bars:
Analogical segmenter using all minimal factorizations (approach
presented in this thesis), one factorization (Lavallée and Langlais,
2009a), Morfessor
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explained there, the reason for this lower coverage is probably not data-sparsity but the

missing high-frequency words within the lower-frequency parts. We can expect better

results when analyzing high- and low-frequency words together – when better machines

or algorithms for calculating analogies within them are available.

6.4. Summary

First of all, the filter is apparently a good predictor: at least a quarter of its generated

candidates turn out to be analogies. Comparing to the potential number of analogies to

be checked of
(
n
4

)
, the number of filterer candidates are only a small fraction.

Secondly, different factorizations do not play an important role on analogies. More

than one factorization occurs among different languages at average only on 1
4

of their

analogies. Thus, the possible impact of considering more than one factor is already

limited.

Finally, the actual impact turns out to be nearly non-existing. Among all experiments

carried out – on different input sizes, languages and high or less frequent words – no

noticeable difference can be seen between considering all factorizations and considering

only one at random using the current method of picking a final segmentation candidate.

This could be different when applying the exhaustive factorization system to Ana-Cof

or to a novel system combining formal analogies with measures from information theory

like MDL.
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7. Conclusion

7.1. Summary of this thesis

In the present diploma thesis, I have given an outline on the problem of morpheme

segmentation and of formal analogies. I have then described two existing well-known

approaches for the problem and an already existing system using formal analogies.

The latter one, I have tried to develop further, with a focus on multiple minimal fac-

torizations – a problem that was apparently not recognized and considered until now.

I have described the conditions for occurring such factorizations and developed a fac-

torizer based on finite-state machines returning an exhaustive set of multiple minimal

factorizations. This factorizer was also presented in detail.

Furthermore, I have created and presented a filter for analogical quadruples, reducing

the computational complexity for finding analogies from
(
n
4

)
to quadratic.

The developed factorizer was then implemented and evaluated with experiments carried

out on different input sizes, languages, and high vs. less frequent words. It turned out

that considering all minimal factorizations did not lead to an improvement using the

present method of calculating final segmentation candidates.

Nevertheless, considering all minimal factorizations the analogical system is cleaner than

picking one at random. While this may have no impact on the actual segmenter perfor-

mance with the current further steps of creating segmentation candidates, this may be

different using another approach, as for instance Ana-Cof from (Lavallée and Langlais,

2009a) or MDL.
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(1)
x : dance − y : dances
| |

z : underachieve − t : underachieves

(2) ↓

(3)
x : dance − y : dance+s
| |

z : under+achieve − t : X ⇒ X = under+achieve+s

Figure 7.1.: Segmenting the word underachieves using a list of segmented
words that only contains dance, dances, underachieve and their
segmentations. In step (1), we search for appropriate triples and
find (dance, dances, underachieve). In (2), we map the items
from the input to output domain, i.e., we simply look up their
segmentations. Eventually, we generate our solution, i.e. our
translation in step (3). This Figure is a simple adaption of Figure
3.3.

7.2. Future work

7.2.1. Improving the Filter

The main current limitation of approaches related to formal analogies is the relative

rather small data size they can handle, caused by the computational complexity. As we

have seen in subsection 6.3.1, the recall improves with more data. Thus, improving the

filter and making it able to handle more input data would very likely also improve recall

and so the performance of the segmenter.

7.2.2. Supervised approach using Analogical learning

Another idea of using formal analogies for morpheme segmenation could be realised

within the framework of analogical learning, as presented in section 3.4. However, this

approach would not be unsupervised anymore, as it would need segmented data to learn

from. As input domain, we still could use a word list, the output domain would be the

same words in segmented form. See Figure 7.1 for an outline of the approach.

The realisation of such an approach would also be much easier if there would already

exist an implemented analogical learning framework. Having such an implementation

one could examine various systems (linguistic) “mapping” problems, be it mapping words
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to their segmentations, words to their Part-of-Speech tags but also sentences to their

syntax tree.

7.2.3. Formal Analogies with MDL

As already indicated, it might be very promising to investigate an approach combining

formal analogies with measures from information theory like MDL. Recalling Goldsmith

from section 4.3,

“[. . . ] the purpose of linguistic theory is to serve as a set of heuristics to help

the linguistic scientist come up with a tight, snug grammar, given a set of

data. MDL can determine which of a set of grammars is the best one, given

the data; no feasible process can search all possible grammars, so there is no

guarantee that another linguist will not come along tomorrow with a better

grammar for the data.” (Goldsmith, 2007, page 8)

The currently existing approaches seem to be restricted to one part of the combination:

Morfessor and Linguistica use MDL for evaluating, but only heuristics for generating the

candidates – Ana-Seg and Ana-Cof use Formal Analogies, but no MDL for evaluation.

By combining formal analogies with MDL, we would have on the one hand a clean, non-

heuristic theoretical model for generating morph candidates and a morphology grammar,

and on the other hand a well-explored model of examining the given candidates and

grammar. With the recognition and extraction of multiple minimal factorizations and

also the exhaustive filtering of analogical candidates presented in this thesis, we now

have the basics for a good exploitation of formal analogies.
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A. Evaluation Results in Detail

A.1. Experiments on analogies

A.1.1. Filter perfomance

input possible eng eng ger ger

size quadruples candidates analogies candidates analogies

1000 41417124750 14153 7747 24913 13849

2000 664668499500 102332 50344 146080 69369

5000 26010428123750 1526320 607169 1925181 738127

10000 416416712497500 12175882 3437902 12825949 3940156

A.1.2. Analogy coverage

input Celex eng Celex ger MC input covered

size covered words covered words Language size words

1000 800 840 eng 10466 10139

2000 1796 1840 fin 10634 10276

5000 4858 4855 ger 10525 10192

10000 9863 9864 tur 10581 10394

vowara 10690 9685
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A.1.3. Different factorizations

Celex eng Celex ger

input analogies w. analogies w. MC analogies with

size > 1 fctrz. > 1 fctrz Language analogies > 1 factorizations

1000 777 4061 eng 2967623 358658

2000 5827 19428 fin 2041579 379905

5000 80140 207717 ger 3328257 856805

10000 464164 1132453 tur 2483118 358861

vowara 1166654 234669

A.2. Experiments on segmentation

A.2.1. Scaling and Languages

Celex eng

all one Morfessor

input Pr Rc F Pr Rc F Pr Rc F

1000 26.18 43.53 32.70 26.15 43.47 32.66 35.26 54.33 42.76

2000 35.39 43.23 38.92 34.44 43.43 38.42 35.84 61.18 45.20

5000 45.35 48.56 46.90 45.23 48.99 47.04 41.67 67.52 51.54

10000 58.87 49.15 53.57 58.31 49.09 53.30 54.08 65.96 59.43

Celex ger

all one Morfessor

input Pr Rc F Pr Rc F Pr Rc F

1000 35.14 27.22 30.68 35.16 27.59 30.92 41.22 38.91 40.03

2000 40.21 27.14 32.41 39.85 26.72 31.99 42.88 41.02 41.93

5000 49.86 25.84 34.04 48.85 25.95 33.90 51.92 43.50 47.34

10000 58.73 26.06 36.11 57.87 25.60 35.49 61.58 43.36 50.89
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MC

all one Morfessor

input Pr Rc F Pr Rc F Pr Rc F

eng 48.95 34.16 40.24 48.46 34.78 40.49 56.79 53.83 55.27

fin 43.21 9.77 15.94 40.55 11.79 18.27 67.28 25.21 36.67

ger 38.04 17.46 23.94 37.01 18.10 24.31 48.37 37.19 42.05

tur 48.82 9.98 16.58 48.07 10.08 16.67 67.14 19.04 29.66

vowara 81.48 2.76 5.33 80.99 2.87 5.53 84.32 3.36 6.46

A.2.2. Frequent and less frequent words

Celex additional eng

all one Morfessor

input Pr Rc F Pr Rc F Pr Rc F

1-5000 45.35 48.56 46.90 45.23 48.99 47.04 41.67 67.52 51.54

5001-10000 35.93 38.19 37.03 35.85 37.84 36.82 38.74 49.45 43.44

10001-15000 32.00 29.84 30.88 31.82 29.97 30.86 35.47 42.96 38.86

15001-20000 29.59 24.83 27.00 29.44 24.85 26.95 33.63 43.66 38.00

Celex additional ger

all one Morfessor

input Pr Rc F Pr Rc F Pr Rc F

1-5000 49.86 25.84 34.04 48.85 25.95 33.90 51.92 43.50 47.34

5001-10000 43.81 19.09 26.59 43.83 19.04 26.55 51.41 31.40 38.99

10001-15000 38.84 16.70 23.35 38.18 16.43 22.97 48.19 27.60 35.10

15001-20000 40.41 13.17 19.87 39.09 13.49 20.06 48.04 28.03 35.40
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B. Selbständigkeitserklärung
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C. Zusammenfassung in deutscher

Sprache

In der vorliegenden Arbeit habe ich mich mit Unüberwachter Morphem-Segmentation

beschäftigt. Dieses Problemfeld der Computeringuistik widmet sich der Entwicklung

von Systemen, die Wörter in ihre kleinsten bedeutungstragenden Einheiten (Morpheme)

trennen, und dabei nur natürlichsprachliche, nicht-annotierte Daten zu nutzen.

Solche Systeme haben zum einen praktische Relevanz: Morphem-Segmentation ist bei

Verarbeitung natürlicher Sprache oft die Voraussetzung für weitere Schritte wie z.B.

lexikalische und syntaktische Analyse. Zum anderen haben sie auch theoretische Rel-

evanz: Eine Morphologie, die automatisch und direkt aus natürlichsprachlichen Daten

erstellt wurde, kann zur Inspiration und Weiterentwicklung manuell erstellter Morpholo-

gien dienen bzw. diese bestätigen oder widerlegen.

Arbeiten rund um unüberwachte Morphem-Segmentation erscheinen regelmäßig zur Mor-

pho Challenge, einer jährlichen Konferenz an der Universität Aalto (Finnland). Eine der

dort eingereichten Arbeit von Lavallée and Langlais (2009a) fußt maßgeblich auf dem

Konzept formaler Analogien: Vier Wörter wie z.B. fragen : fragst :: sagen : sagst

bilden eine solche Analogie. Aus dieser werden minimale Faktorisierungen generiert,

wie z.B. (frag, sag)(en, st). Diese Faktoren werden dann als Morphem-Kandidaten

genutzt. Die dort eingereichte Arbeit vernachlässigte jedoch das Problem multipler min-

imaler Faktorisierungen: Nicht nur die gegebene, sondern auch (fra, sa)(gen, gst) und

(fr, s)(agen, agst) sind valide minimale Faktorisierungen. In dieser Arbeit stelle ich ein

System vor, das all diese Faktorisierungen in Betracht zieht.

Dazu habe ich in Kapitel 2 zunächst das Problem dieser Arbeit disktutiert und abge-

grenzt, dabei verschiedene Quellen aus der Morphologie herangezogen. In Kapitel 3

habe ich in die theoretischen Grundlagen formaler Analogien eingeführt. Kapitel 4 wid-

mete ich einer genaueren Beschreibung von (Lavallée and Langlais, 2009a) sowie den
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zwei weiteren, bekannten Systemen Morfessor (Creutz and Lagus, 2005) und Linguis-

tica (Goldsmith, 2006). In Kapitel 5 habe ich mein System vorgestellt und dieses in

Kapitel 6 evaluiert.

Bei der Evaluation stellte sich heraus, dass die eingeführte Veränderung zu keiner sicht-

baren Verbesserung der Ergebnisse bei der Morphem-Segmentierung führt (siehe Ab-

schnitt 6.3.1). Immerhin konnten bei der Evaluation aber auch allgemeine Erkenntnisse

zum Vorkommen formaler Analogien in natürlichsprachlichen Daten gewonnen werden.

So ist die Anzahl von Wörtern, die eine Analogie bilden können, mit durchschnittlich

95% unerwartet hoch (siehe Abschnitt 6.2.2). Die für das System entwicklte Kodierung

formaler Analogien 5.3.2 könnte zudem nützlich für andere Anwendungen sein.
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